ترغب بنشر مسار تعليمي؟ اضغط هنا

The transient localization scenario for charge transport in crystalline organic materials

127   0   0.0 ( 0 )
 نشر من قبل Simone Fratini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge transport in crystalline organic semiconductors is intrinsically limited by the presence of large thermal molecular motions, which are a direct consequence of the weak van der Waals inter-molecular interactions. These lead to an original regime of transport called textit{transient localization}, sharing features of both localized and itinerant electron systems. After a brief review of experimental observations that pose a challenge to the theory, we concentrate on a commonly studied model which describes the interaction of the charge carriers with inter-molecular vibrations. We present different theoretical approaches that have been applied to the problem in the past, and then turn to more modern approaches that are able to capture the key microscopic phenomenon at the origin of the puzzling experimental observations, i.e. the quantum localization of the electronic wavefuntion at timescales shorter than the typical molecular motions. We describe in particular a relaxation time approximation which clarifies how the transient localization due to dynamical molecular motions relates to the Anderson localization realized for static disorder, and allows us to devise strategies to improve the mobility of actual compounds. The relevance of the transient localization scenario to other classes of systems is briefly discussed.



قيم البحث

اقرأ أيضاً

In addition to being the core quantity in density functional theory, the charge density can be used in many tertiary analyses in materials sciences from bonding to assigning charge to specific atoms. The charge density is data-rich since it contains information about all the electrons in the system. With increasing utilization of machine-learning tools in materials sciences, a data-rich object like the charge density can be utilized in a wide range of applications. The database presented here provides a modern and user-friendly interface for a large and continuously updated collection of charge densities as part of the Materials Project. In addition to the charge density data, we provide the theory and code for changing the representation of the charge density which should enable more advanced machine-learning studies for the broader community.
124 - S. Ciuchi , S. Fratini 2012
We explore the charge transport mechanism in organic semiconductors based on a model that accounts for the thermal intermolecular disorder at work in pure crystalline compounds, as well as extrinsic sources of disorder that are present in current exp erimental devices. Starting from the Kubo formula, we develop a theoretical framework that relates the time-dependent quantum dynamics of electrons to the frequency-dependent conductivity. The electron mobility is then calculated through a relaxation time approximation that accounts for quantum localization corrections beyond Boltzmann theory, and allows us to efficiently address the interplay between highly conducting states in the band range and localized states induced by disorder in the band tails. The emergence of a transient localization phenomenon is shown to be a general feature of organic semiconductors, that is compatible with the bandlike temperature dependence of the mobility observed in pure compounds. Carrier trapping by extrinsic disorder causes a crossover to a thermally activated behavior at low temperature, which is progressively suppressed upon increasing the carrier concentration, as is commonly observed in organic field-effect transistors. Our results establish a direct connection between the localization of the electronic states and their conductive properties, formalizing phenomenological considerations that are commonly used in the literature.
Efficient energy transport is highly desirable for organic semiconductor (OSC) devices such as photovoltaics, photodetectors, and photocatalytic systems. However, photo-generated excitons in OSC films mostly occupy highly localized states over their lifetime. Energy transport is hence thought to be mainly mediated by the site-to-site hopping of localized excitons, limiting exciton diffusion coefficients to below ~10^{-2} cm^2/s with corresponding diffusion lengths below ~50 nm. Here, using ultrafast optical microscopy combined with non-adiabatic molecular dynamics simulations, we present evidence for a new highly-efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. In films of highly-ordered poly(3-hexylthiophene) nanofibers, prepared using living crystallization-driven self-assembly, we show that this enables exciton diffusion constants up to 1.1+-0.1 cm^2/s and diffusion lengths of 300+-50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of the basic picture of exciton dynamics. This establishes new design rules to engineer efficient energy transport in OSC films, which will enable new devices architectures not based on restrictive bulk heterojunctions.
Charge migration is a ubiquitous phenomenon with profound implications throughout many areas of chemistry, physics, biology and materials science. The long-term vision of designing functional materials with tailored molecular scale properties has tri ggered an increasing quest to identify prototypical systems where truly molecular conduction pathways play a fundamental role. Such pathways can be formed due to the molecular organization of various organic materials and are widely used to discuss electronic properties at the nanometer scale. Here, we present a computational methodology to study charge propagation in organic molecular stacks at nano and sub-nanoscales and exploit this methodology to demonstrate that moving charge carriers strongly affect the values of the physical quantities controlling their motion. The approach is also expected to find broad application in the field of charge migration in soft matter systems.
Crystals are a state of matter characterised by periodic order. Yet crystalline materials can harbour disorder in many guises, such as non-repeating variations in composition, atom displacements, bonding arrangements, molecular orientations, conforma tions, charge states, orbital occupancies, or magnetic structure. Disorder can sometimes be random, but more usually it is correlated. Frontier research into disordered crystals now seeks to control and exploit the unusual patterns that persist within these correlated disordered states in order to access functional responses inaccessible to conventional crystals. In this review we survey the core design principles at the disposal of materials chemists that allow targeted control over correlated disorder. We show how these principles---often informed by long-studied statistical mechanical models---can be applied across an unexpectedly broad range of materials, including organics, supramolecular assemblies, oxide ceramics, and metal--organic frameworks. We conclude with a forward-looking discussion of the exciting link to function in responsive media, thermoelectrics, topological phases, and information storage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا