ترغب بنشر مسار تعليمي؟ اضغط هنا

An explicit solution for optimal investment in Heston model

129   0   0.0 ( 0 )
 نشر من قبل Dmitry Muravey
 تاريخ النشر 2015
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider a variation of the Mertons problem with added stochastic volatility and finite time horizon. It is known that the corresponding optimal control problem may be reduced to a linear parabolic boundary problem under some assumptions on the underlying process and the utility function. The resulting parabolic PDE is often quite difficult to solve, even when it is linear. The present paper contributes to the pool of explicit solutions for stochastic optimal control problems. Our main result is the exact solution for optimal investment in Heston model.



قيم البحث

اقرأ أيضاً

In this paper, we study the asymptotic behaviors of implied volatility of an affine jump-diffusion model. Let log stock price under risk-neutral measure follow an affine jump-diffusion model, we show that an explicit form of moment generating functio n for log stock price can be obtained by solving a set of ordinary differential equations. A large-time large deviation principle for log stock price is derived by applying the G{a}rtner-Ellis theorem. We characterize the asymptotic behaviors of the implied volatility in the large-maturity and large-strike regime using rate function in the large deviation principle. The asymptotics of the Black-Scholes implied volatility for fixed-maturity, large-strike and fixed-maturity, small-strike regimes are also studied. Numerical results are provided to validate the theoretical work.
59 - Dmitry Muravey 2017
This paper studies an optimal investment problem under M-CEV with power utility function. Using Laplace transform we obtain explicit expression for optimal strategy in terms of confluent hypergeometric functions. For obtained representations we deriv e asymptotic and approximation formulas contains only elementary functions and continued fractions. These formulas allow to make analysis of impact of models parameters and effects of parameters misspecification. In addition we propose some extensions of obtained results that can be applicable for algorithmic strategies.
This paper studies the retirement decision, optimal investment and consumption strategies under habit persistence for an agent with the opportunity to design the retirement time. The optimization problem is formulated as an interconnected optimal sto pping and stochastic control problem (Stopping-Control Problem) in a finite time horizon. The problem contains three state variables: wealth $x$, habit level $h$ and wage rate $w$. We aim to derive the retirement boundary of this wealth-habit-wage triplet $(x,h,w)$. The complicated dual relation is proposed and proved to convert the original problem to the dual one. We obtain the retirement boundary of the dual variables based on an obstacle-type free boundary problem. Using dual relation we find the retirement boundary of primal variables and feed-back forms of optimal strategies. We show that if the so-called de facto wealth exceeds a critical proportion of wage, it will be optimal for the agent to choose to retire immediately. In numerical applications, we show how de facto wealth determines the retirement decisions and optimal strategies. Moreover, we observe discontinuity at retirement boundary: investment proportion always jumps down upon retirement, while consumption may jump up or jump down, depending on the change of marginal utility. We also find that the agent with higher standard of life tends to work longer.
We deal with the problem of outsourcing the debt for a big investment, according two situations: either the firm outsources both the investment (and the associated debt) and the exploitation to a private consortium, or the firm supports the debt and the investment but outsources the exploitation. We prove the existence of Stackelberg and Nash equilibria between the firm and the private consortium, in both situations. We compare the benefits of these contracts. We conclude with a study of what happens in case of incomplete information, in the sense that the risk aversion coefficient of each partner may be unknown by the other partner.
The problem of portfolio allocation in the context of stocks evolving in random environments, that is with volatility and returns depending on random factors, has attracted a lot of attention. The problem of maximizing a power utility at a terminal t ime with only one random factor can be linearized thanks to a classical distortion transformation. In the present paper, we address the problem with several factors using a perturbation technique around the case where these factors are perfectly correlated reducing the problem to the case with a single factor. We illustrate our result with a particular model for which we have explicit formulas. A rigorous accuracy result is also derived using a verification result for the HJB equation involved. In order to keep the notations as explicit as possible, we treat the case with one stock and two factors and we describe an extension to the case with two stocks and two factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا