ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O

112   0   0.0 ( 0 )
 نشر من قبل Shiyong Tan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of Na2Ti2Sb2O, a parent compound of the newly discovered titanium-based oxypnictide superconductors, is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicating that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime.

قيم البحث

اقرأ أيضاً

The effect of hydrostatic pressure (P) on charge density waves (CDW) in YBa2Cu3Oy has recently been controversial. Using NMR, we find that both the short-range CDW in the normal state and the long-range CDW in high fields are, at most, slightly weake ned at P=1.9 GPa. This result is in contradiction with x-ray scattering results finding complete suppression of the CDW at ~1 GPa and we discuss possible explanations of this discrepancy. Quantitative analysis, however, shows that the NMR data is not inconsistent with a disappearance of the CDW on a larger pressure scale, typically ~10-20 GPa. We also propose a simple model reconciling transport data with such a hypothesis, provided the pressure-induced change in doping is taken into account. We conclude that it is therefore possible that most of the spectacular increase in Tc upon increasing pressure up to ~15~GPa arises from a concomitant decrease of CDW strength.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3d$^9$ configuration as Cu$^{2+}$ in high-$T_C$ cuprates, the electronic structure consistencies and varia nces remain elusive, due to the lack of direct experimental probes. Here, we present a soft x-ray photoemission spectroscopy study on both parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. By identifying the Ni character with resonant photoemission and comparison to density function theory + U calculations, we estimate U ~ 5 eV, smaller than the charge transfer energy $Delta$ ~ 8 eV, in contrast to the cuprates being charge transfer insulators. Near the Fermi level (EF), we observe a signature of rare-earth spectral intensity in the parent compound, which is depleted upon doping. The parent compound, self-doped from rare-earth electrons, exhibits higher density of states at EF but manifests weaker superconducting instability than the Sr-doped case, demonstrating a complex interplay between the strongly-correlated Ni 3d and the weakly-interacting rare-earth 5d states in these oxide-intermetallic nickelates.
116 - H. Miao , D. Ishikawa , R. Heid 2017
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the tempe rature dependence of the low energy phonons in the canonical CDW ordered cuprate La$_{1.875}$Ba$_{0.125}$CuO$_{4}$. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that 214-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-214-type cuprates such as YBa$_{2}$Cu$_{3}$O$_{6+delta}$. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.
An interaction between electrons and lattice vibrations (phonons) results in two fundamental quantum phenomena in solids: in three dimensions it can turn a metal into a superconductor whereas in one dimension it can turn a metal into an insulator. In two dimensions (2D) both superconductivity and charge-density waves (CDW) are believed to be anomalous. In superconducting cuprates, critical transition temperatures are unusually high and the energy gap may stay unclosed even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the resistivity below the transition can decrease with temperature even faster than in the normal phase and a basic prerequisite for the CDW, the favourable nesting conditions (when some sections of the Fermi surface appear shifted by the same vector), seems to be absent. Notwithstanding the existence of alternatives to conventional theories, both phenomena in 2D still remain the most fascinating puzzles in condensed matter physics. Using the latest developments in high-resolution angle-resolved photoemission spectroscopy (ARPES) here we show that the normal-state pseudogap also exists in one of the most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is driven by a conventional nesting instability, which is masked by the pseudogap. Our findings reconcile and explain a number of unusual, as previously believed, experimental responses as well as disprove many alternative theoretical approaches. The magnitude, character and anisotropy of the 2D-CDW pseudogap are intriguingly similar to those seen in superconducting cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا