ترغب بنشر مسار تعليمي؟ اضغط هنا

The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis

123   0   0.0 ( 0 )
 نشر من قبل Thomas Barclay
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kepler-296 is a binary star system with two M-dwarf components separated by 0.2 arcsec. Five transiting planets have been confirmed to be associated with the Kepler-296 system; given the evidence to date, however, the planets could in principle orbit either star. This ambiguity has made it difficult to constrain both the orbital and physical properties of the planets. Using both statistical and analytical arguments, this paper shows that all five planets are highly likely to orbit the primary star in this system. We performed a Markov-Chain Monte Carlo simulation using a five transiting planet model, leaving the stellar density and dilution with uniform priors. Using importance sampling, we compared the model probabilities under the priors of the planets orbiting either the brighter or the fainter component of the binary. A model where the planets orbit the brighter component, Kepler-296A, is strongly preferred by the data. Combined with our assertion that all five planets orbit the same star, the two outer planets in the system, Kepler-296 Ae and Kepler-296 Af, have radii of 1.53 +/- 0.26 and 1.80 +/- 0.31 R_earth, respectively, and receive incident stellar fluxes of 1.40 +/- 0.23 and 0.62 +/- 0.10 times the incident flux the Earth receives from the Sun. This level of irradiation places both planets within or close to the circumstellar habitable zone of their parent star.



قيم البحث

اقرأ أيضاً

Kepler has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential both individually and collectively for understanding the formation and evolution of planetary systems. Many of these systems consist of mult iple small planets with periods less than ~50 days known as Systems with Tightly-spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting planets: f, d, e, b, and c with periods of 1.0, 3.1, 4.6, 7.1, 9.5 days, respectively. We provide measurements of transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable range, we infer masses for the outer four planets (d, e, b, and c) to be $6.75^{+0.69}_{-0.51}$, $4.13^{+0.81}_{-0.95}$, $6.93^{+1.05}_{-0.70}$, and $6.74^{+1.23}_{-0.86}$ Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d and e and $sim$2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into exoplanetary systems.
185 - W. J. Borucki 2013
We present the detection of five planets -- Kepler-62b, c, d, e, and f -- of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii, orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4 and 267.3 days, respectively. The outermost planets (Kepler-62e & -62f) are super-Earth-size (1.25 < planet radius/earth radius < 2.0) planets in the habitable zone (HZ) of their host star, receiving 1.2 +- 0.2 and 0.41 +- 0.05 times the solar flux at Earths orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 Gyr suggest that both planets could be solid: either with a rocky composition or composed of mostly solid water in their bulk.
The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly-packed configuration with periods between 10 and 47 days. We perform a dynamical analys is of the system based upon transit timing variations observed in more than three years of ik photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the stars density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.
While the vast majority of multiple-planet systems have their orbital angular momentum axes aligned with the spin axis of their host star, Kepler-56 is an exception: its two transiting planets are coplanar yet misaligned by at least 40 degrees with r espect to their host star. Additional follow-up observations of Kepler-56 suggest the presence of a massive, non-transiting companion that may help explain this misalignment. We model the transit data along with Keck/HIRES and HARPS-N radial velocity data to update the masses of the two transiting planets and infer the physical properties of the third, non-transiting planet. We employ a Markov Chain Monte Carlo sampler to calculate the best-fitting orbital parameters and their uncertainties for each planet. We find the outer planet has a period of 1002 $pm$ 5 days and minimum mass of 5.61 $pm$ 0.38 Jupiter masses. We also place a 95% upper limit of 0.80 m/s/yr on long-term trends caused by additional, more distant companions.
147 - James E. Owen 2017
A new piece of evidence supporting the photoevaporation-driven evolution model for low-mass, close-in exoplanets was recently presented by the California-Kepler-Survey. The radius distribution of the Kepler planets is shown to be bimodal, with a ``va lley separating two peaks at 1.3 and 2.6 Rearth. Such an ``evaporation-valley had been predicted by numerical models previously. Here, we develop a minimal model to demonstrate that this valley results from the following fact: the timescale for envelope erosion is the longest for those planets with hydrogen/helium-rich envelopes that, while only a few percent in weight, double its radius. The timescale falls for envelopes lighter than this because the planets radius remains largely constant for tenuous envelopes. The timescale also drops for heavier envelopes because the planet swells up faster than the addition of envelope mass. Photoevaporation, therefore, herds planets into either bare cores ~1.3 Rearth, or those with double the cores radius (~2.6 Rearth). This process mostly occurs during the first 100 Myrs when the stars high energy flux are high and nearly constant. The observed radius distribution further requires that the Kepler planets are clustered around 3 Mearth in mass, are born with H/He envelopes more than a few percent in mass, and that their cores are similar to the Earth in composition. Such envelopes must have been accreted before the dispersal of the gas disks, while the core composition indicates formation inside the ice-line. Lastly, the photoevaporation model fails to account for bare planets beyond ~30-60 days, if these planets are abundant, they may point to a significant second channel for planet formation, resembling the Solar-System terrestrial planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا