ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar small-scale dynamo and polarity of sunspot groups

309   0   0.0 ( 0 )
 نشر من قبل Anna Khlystova I.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.



قيم البحث

اقرأ أيضاً

Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 2023 by using Rome (cycles 2021) and Learmonth Solar Observatory (cycl es 2223) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification) and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for the solar cycle 22. In general large SG numbers appear to reach their maximum in the middle of the solar cycle (phase 0.450.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phase 0.290.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum CME speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long term variations of the total solar irradiance, which is thought to be an important factor in the Sun - Earth climate relationship.
We quantify possible differences between turbulent dynamo action in the Sun and the dynamo action studied in idealized simulations. For this purpose we compare Fourier-space shell-to-shell energy transfer rates of three incrementally more complex dyn amo simulations: an incompressible, periodic simulation driven by random flow, a simulation of Boussinesq convection, and a simulation of fully compressible convection that includes physics relevant to the near-surface layers of the Sun. For each of the simulations studied, we find that the dynamo mechanism is universal in the kinematic regime because energy is transferred from the turbulent flow to the magnetic field from wavenumbers in the inertial range of the energy spectrum. The addition of physical effects relevant to the solar near-surface layers, including stratification, compressibility, partial ionization, and radiative energy transport, does not appear to affect the nature of the dynamo mechanism. The role of inertial-range shear stresses in magnetic field amplification is independent from outer-scale circumstances, including forcing and stratification. Although the shell-to-shell energy transfer functions have similar properties to those seen in mean-flow driven dynamos in each simulation studied, the saturated states of these simulations are not universal because the flow at the driving wavenumbers is a significant source of energy for the magnetic field.
We compare spectra of the zonal harmonics of the large-scale magnetic field of the Sun using observation results and solar dynamo models. The main solar activity cycle as recorded in these tracers is a much more complicated phenomenon than the eigen solution of solar dynamo equations with the growth saturated by a back reaction of the dynamo-driven magnetic field on solar hydrodynamics. The nominal 11(22)-year cycle as recorded in each mode has a specific phase shift varying from cycle to cycle; the actual length of the cycle varies from one cycle to another and from tracer to tracer. Both the observation and the dynamo model show an exceptional role of the axisymmetric $ell_{5}$ mode. Its origin seems to be readily connected with the formation and evolution of sunspots on the solar surface. The results of observations and dynamo models show a good agreement for the low $ell_{1}$ and $ell_{3}$ modes. The results for these modes do not differ significantly for the axisymmetric and nonaxisymmetric models. Our findings support the idea that the sources of the solar dynamo arise as a result of both the distributed dynamo processes in the bulk of the convection zone and the surface magnetic activity.
We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. B lueshifts of about 2 km/s are seen near the entrance of a granular light bridge on the limbward side of the spot. They lie next to a strongly redshifted patch that appeared 6 mins earlier. Both patches are seen for 25 mins until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of it. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength and inclination, with the field becoming nearly horizontal. In the redshifted patch, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca filtergrams over these features, 17 mins after they emerge in the photosphere. The brightening is due to emission in the blue wing of the Ca line, close to its knee. Non-LTE
In this study we discuss two key issues related to a small-scale dynamo instability at low magnetic Prandtl numbers and large magnetic Reynolds numbers, namely: (i) the scaling for the growth rate of small-scale dynamo instability in the vicinity of the dynamo threshold; (ii) the existence of the Golitsyn spectrum of magnetic fluctuations in small-scale dynamos. There are two different asymptotics for the small-scale dynamo growth rate: in the vicinity of the threshold of the excitation of the small-scale dynamo instability, $lambda propto ln({rm Rm}/ {rm Rm}^{rm cr})$, and when the magnetic Reynolds number is much larger than the threshold of the excitation of the small-scale dynamo instability, $lambda propto {rm Rm}^{1/2}$, where ${rm Rm}^{rm cr}$ is the small-scale dynamo instability threshold in the magnetic Reynolds number ${rm Rm}$. We demonstrated that the existence of the Golitsyn spectrum of magnetic fluctuations requires a finite correlation time of the random velocity field. On the other hand, the influence of the Golitsyn spectrum on the small-scale dynamo instability is minor. This is the reason why it is so difficult to observe this spectrum in direct numerical simulations for the small-scale dynamo with low magnetic Prandtl numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا