ﻻ يوجد ملخص باللغة العربية
Axions in the Peccei-Quinn (PQ) mechanism provide a promising solution to the strong CP problem in the standard model of particle physics. Coherently generated PQ scalar fields could dominate the energy density in the early Universe and decay into relativistic axions, which would conflict with the current dark radiation constraints. We study the possibility that a thermal inflation driven by a $U(1)$ gauged Higgs field dilutes such axions. A well-motivated extra gauged $U(1)$ would be the local $B-L$ symmetry. We also discuss the implication for the case of $U(1)_{B-L}$ and an available baryogenesis mechanism in such cosmology.
The Peccei-Quinn mechanism presents a neat solution to the strong CP problem. As a by-product, it provides an ideal dark matter candidate, the axion, albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta af
In this paper, we propose a generalized natural inflation (GNI) model to study axion-like particle (ALP) inflation and dark matter (DM). GNI contains two additional parameters $(n_1, n_2)$ in comparison with the natural inflation, that make GNI more
We study derivatively coupled fermions in axion-driven inflation, specifically $m_phi^2phi^2$ and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the
We show how successful supersymmetric hybrid inflation is realized in realistic models where the resolution of the minimal supersymmetric standard model mu problem is intimately linked with axion physics. The scalar fields that accompany the axion, s
We present a scenario where an axion-like field drives inflation until a potential barrier, which keeps a waterfall field at the origin, disappears and a waterfall transition occurs. Such a barrier separates the scale of inflation from that of the wa