ﻻ يوجد ملخص باللغة العربية
We present a new approach to simulating mixtures of gas and dust in smoothed particle hydrodynamics (SPH). We show how the two-fluid equations can be rewritten to describe a single-fluid mixture moving with the barycentric velocity, with each particle carrying a dust fraction. We show how this formulation can be implemented in SPH while preserving the conservation properties (i.e. conservation of mass of each phase, momentum and energy). We also show that the method solves two key issues with the two fluid approach: it avoids over-damping of the mixture when the drag is strong and prevents a problem with dust particles becoming trapped below the resolution of the gas. We also show how the general one-fluid formulation can be simplified in the limit of strong drag (i.e. small grains) to the usual SPH equations plus a diffusion equation for the evolution of the dust fraction that can be evolved explicitly and does not require any implicit timestepping. We present tests of the simplified formulation showing that it is accurate in the small grain/strong drag limit. We discuss some of the issues we have had to solve while developing this method and finally present a preliminary application to dust settling in protoplanetary discs.
We present MULTIGRAIN, an algorithm for simulating multiple phases of small dust grains embedded in a gas, building on our earlier work in simulating two-phase mixtures of gas and dust in SPH (Laibe & Price 2012a,b; Price & Laibe 2015). The MULTIGRAI
The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. We have adapted the code to describe the interaction of two different gas phases, the diffu
PHASECam is the Large Binocular Telescope Interferometers (LBTI) phase sensor, a near-infrared camera which is used to measure tip/tilt and phase variations between the two AO-corrected apertures of the Large Binocular Telescope (LBT). Tip/tilt and p
The study of the stability of massive gaseous disks around a star in a non-isolated context is not a trivial issue and becomes a more complicated task for disks hosted by binary systems. The role of self-gravity is thought to be significant, whenever
We present general calculations allowing to express the thermodynamical coefficients and thermophysical properties (compressibility, thermal coefficients and heat capacities) of a material composed of a mixture of two constituents or phases, regardle