ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping effects on charge density instability in non-centrosymmetric PbxTaSe2

77   0   0.0 ( 0 )
 نشر من قبل Peter Lemmens
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the investigation of vibrational and electronic properties of the Pb doped dichalcogenide PbxTaSe2 using Raman scattering experiments. We observe a marked variation of the main vibrational modes with Pb concentration x. The concentration dependence of the vibrational modes resembles the dependence of the vibrational modes in TaSe2 on the number of crystallographic layers along the c axis direction [1]. The temperature and polarization dependence of Raman spectra of PbxTaSe2 revealed additional broad modes in the low frequency regime which are discussed in context of remnant charge density wave, induced disorder, or PbSe phase formed in the interface of Pb and TaSe2 layers.


قيم البحث

اقرأ أيضاً

273 - D. F. Shao , R. C. Xiao , W. J. Lu 2015
The transition metal dichalcogenide (TMD) $1T$-TaS$_{2}$ exhibits a rich set of charge density wave (CDW) orders. Recent investigations suggested that using light or electric field can manipulate the commensurate (C) CDW ground state. Such manipulati ons are considered to be determined by the charge carrier doping. Here we simulate by first-principles calculations the carrier doping effect on CCDW in $1T$-TaS$_{2}$. We investigate the charge doping effects on the electronic structures and phonon instabilities of $1T$ structure and analyze the doping induced energy and distortion ratio variations in CCDW structure. We found that both in bulk and monolayer $1T$-TaS$_{2}$, CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric field induced hole doping increases the energy of CCDW, so that the system transforms to NCCDW or similar metastable state. On the other hand, even the CCDW distortion is more stable upon in-plain electric field induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from CCDW to nearly commensurate (NC) CDW or similar metastable state. We also estimate that hole doping can introduce potential superconductivity with $T_{c}$ of $6sim7$ K. Controllable switching of different states such as CCDW/Mott insulating state, metallic state, and even the superconducting state can be realized in $1T$-TaS$_{2}$, which makes the novel material have very promising applications in the future electronic devices.
The semimetallic or semiconducting nature of the transition metal dichalcogenide 1$T$-TiSe$_2$ remains under debate after many decades mainly due to the fluctuating nature of its 2 $times$ 2 $times$ 2 charge-density-wave (CDW) phase at room-temperatu re. In this letter, using angle-resolved photoemission spectroscopy, we unambiguously demonstrate that the 1$T$-TiSe$_2$ normal state is semimetallic with an electron-hole band overlap of $sim$110 meV by probing the low-energy electronic states of the perturbed CDW phase strongly doped by alkali atoms. Our study not only closes a long-standing debate but also supports the central role of the Fermi surface for driving the CDW and superconducting instabilities in 1$T$-TiSe$_2$.
Understanding the crystal field splitting and orbital polarization in non-centrosymmetric systems such as ferroelectric materials is fundamentally important. In this study, taking BaTiO$_3$ (BTO) as a representative material we investigate titanium c rystal field splitting and orbital polarization in non-centrosymmetric TiO$_6$ octahedra with resonant X-ray linear dichroism at Ti $L_{2,3}$-edge. The high-quality BaTiO$_3$ thin films were deposited on DyScO$_3$ (110) single crystal substrates in a layer-by-layer way by pulsed laser deposition. The reflection high-energy electron diffraction (RHEED) and element specific X-ray absorption spectroscopy (XAS) were performed to characterize the structural and electronic properties of the films. In sharp contrast to conventional crystal field splitting and orbital configuration ($d_{xz}$/$d_{yz}$ $<$ $d_{xy}$ $<$ $d_{3z^2-r^2}$ $<$ $d_{x^2-y^2}$ or $d_{xy}$ $<$ $d_{xz}$/$d_{yz}$ $<$ $d_{x^2-y^2}$ $<$ $d_{3z^2-r^2}$) according to Jahn-Teller effect, it is revealed that $d_{xz}$, $d_{yz}$, and $d_{xy}$ orbitals are nearly degenerate, whereas $d_{3z^2-r^2}$ and $d_{x^2-y^2}$ orbitals are split with an energy gap $sim$ 100 meV in the epitaxial BTO films. The unexpected degenerate states $d_{xz}$/$d_{yz}$/$d_{xy}$ are coupled to Ti-O displacements resulting from competition between polar and Jahn-Teller distortions in non-centrosymmetric TiO$_6$ octhedra of BTO films. Our results provide a route to manipulate orbital degree of freedom by switching electric polarization in ferroelectric materials.
We studied the relationship between the charge doping and the correlation, and its effects on the spectral function of the BaFe$_2$As$_2$ compound in the framework of the density functional theory combined with the dynamical mean field theory (DFT+DM FT). The calculated mass enhancements showed that the electronic correlation varies systematically from weak to strong when moving from the heavily electron-doped regime to the heavily hole-doped one. Since the compound has a multi-orbital nature, the correlation is orbital-dependent and it increases as hole-doping increases. The Fe-3d$_{xy}$ (xy) orbital is much more correlated than the other orbitals, because it reaches its half-filled situation and has a narrower energy scale around the Fermi energy. Our findings can be consistently understood as the tendency of the heavily hole-doped BaFe$_2$As$_2$ compound to an orbital-selective Mott phase (OSMP). Moreover, the fact that the superconducting state of the heavily hole-doped BaFe$_2$As$_2$ is an extreme case of such a selective Mottness constrains the non-trivial role of the electronic correlation in iron-pnictide superconductors. In addition, the calculated spectral function shows a behavior that is compatible with experimental results reported for every charge-doped BaFe$_2$As$_2$ compound and clarifies the importance of the characterization of its physical effects on the material.
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C a_{0.50}MnO_3 that this state is in fact a prototypical charge density wave (CDW) which undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. Our discovery that the manganite superstructure is a CDW shows that unusual transport and structural properties do not require exotic physics, but can emerge when a well-understood phase (the CDW) coexists with disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا