ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to compute the cuspidal Calogero-Moser families for all infinite families of finite Coxeter groups, at all parameters. We do this by first computing the symplectic leaves of the associated Calogero-Moser space and then by classifying certain rigid modules. Numerical evidence suggests that there is a very close relationship between Calogero-Moser families and Lusztig families. Our classification shows that, additionally, the cuspidal Calogero-Moser families equal cuspidal Lusztig families for the infinite families of Coxeter groups.
We define and study cocycles on a Coxeter group in each degree generalizing the sign function. When the Coxeter group is a Weyl group, we explain how the degree three cocycle arises naturally from geometry representation theory.
We prove that certain families of Coxeter groups and inclusions $W_1hookrightarrow W_2hookrightarrow...$ satisfy homological stability, meaning that in each degree the homology $H_ast(BW_n)$ is eventually independent of $n$. This gives a uniform trea
Let $(bf U, bf U^imath)$ be a quantum symmetric pair of Kac-Moody type. The $imath$quantum groups $bf U^imath$ and the universal $imath$quantum groups $widetilde{bf U}^imath$ can be viewed as a generalization of quantum groups and Drinfeld doubles $w
Let T_n be the maximal torus of diagonal matrices in GL_n, t_n be the Lie algebra of T_n and let N_n=N_{GL_n}(T_n) be the normalizer of T_n in GL_n. Consider then the quotient stacks [t_n/N_n] and [gl_n/GL_n] for the conjugation actions. In this pape
Let H be any reductive p-adic group. We introduce a notion of cuspidality for enhanced Langlands parameters for H, which conjecturally puts supercuspidal H-representations in bijection with such L-parameters. We also define a cuspidal support map and