ﻻ يوجد ملخص باللغة العربية
We analyse the computation of the partition function of 5d $T_N$ theories in Higgs branches using the topological vertex. The theories are realised by a web of $(p,q)$ 5-branes whose dual description may be given by an M-theory compactification on a certain local non-toric Calabi-Yau threefold. We explicitly show how it is possible to directly apply the topological vertex to the non-toric geometry. Using this novel technique, which considerably simplifies the computation by the existing method, we are able to compute the partition function of the higher rank $E_6$, $E_7$ and $E_8$ theories. Moreover we show how in some specific cases similar results can be extended to the computation of the partition function of 5d $T_N$ theories in the Higgs branch using the refined topological vertex. These cases require a modification of the refined topological vertex.
We present a general prescription by which we can systematically compute exact partition functions of five-dimensional supersymmetric theories which arise in Higgs branches of the $T_N$ theory. The theories may be realized by webs of 5-branes whose d
We propose a graph-theoretic description to determine and characterize 5d superconformal field theories (SCFTs) that arise as circle reductions of 6d $mathcal{N} = (1,0)$ SCFTs. Each 5d SCFT is captured by a graph, called a Combined Fiber Diagram (CF
We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses sati
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of t
Building on recent progress in the study of compactifications of $6d$ $(1,0)$ superconformal field theories (SCFTs) on Riemann surfaces to $4d$ $mathcal{N}=1$ theories, we initiate a systematic study of compactifications of $5d$ $mathcal{N}=1$ SCFTs