ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical diode effect in the room-temperature multiferroic BiFeO$_3

88   0   0.0 ( 0 )
 نشر من قبل Istvan Kezsmarki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiferroics permit the magnetic control of the electric polarization and electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO$_3$ over the gigahertz--terahertz frequency range. Supporting theory attributes the observed unidirectional transmission to the spin-current driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.

قيم البحث

اقرأ أيضاً

77 - F. Meggle , M. Viret , J. Kreisel 2019
We studied the light-induced effects in BiFeO$_3$ single crystals as a function of temperature by means of optical spectroscopy. Here we report the observation of several light-induced absorption features, which are discussed in terms of the photostr iction effect and are interpreted in terms of excitons. The temperature dependence of their energy position suggests a possible coupling between the excitons and the lattice vibrations. Moreover, there are hints for anomalies in the temperature evolution of the excitonic features, which might be related to the temperature-induced magnetic phase transitions in BiFeO$_3$. Our findings suggest a coupling between light-induced excitons and the lattice and spin degrees of freedom, which might be relevant for the observed ultrafast photostriction effect in multiferroic BiFeO$_3$.
In this article the mechanism of the linear magnetoelectric (ME) effect in the rhombohedral multiferroic BiFeO$_3$ is considered. The study is based on the symmetry approach of the GinzburgLandau type, in which polarization, antiferrodistortion, and antiferromagnetic momentum vectors are viewed as ordering parameters. We demonstrate that the linear ME effect in BFO is caused by reorientation of the antiferrodistortion vector in either electric or magnetic field. The numerical estimations, which show quantitative agreement with the results of the recent measurements in film samples, have been performed. A possibility of significant enhancement of the magnetoelectric effect by applying an external static electric field has been investigated. The considered approach is promising for explaining the high values of the ME effect in composite films and heterostructures with BFO.
The pressure dependence of light-induced effects in single-crystalline BiFeO$_3$ is studied by optical spectroscopy. At low pressures, we observe three light-induced absorption features with energies just below the two crystal field excitations and t he absorption onset, respectively. These absorption features were previously ascribed to excitons, possibly connected with the ultra-fast photostriction effect in BiFeO$_3$. The pressure-induced redshift of the absorption features follows the pressure dependence of the corresponding crystal field excitations and absorption onset, suggesting the link between them. Above the structural phase transition at $P_{mathrm{c1}}approx{}3.5$ GPa the three absorption features disappear, suggesting their connection to the polar phase in BiFeO$_3$. The pressure-induced disappearance of the photo-induced features is irreversible upon pressure release.
We report the direct observation of a resonance mode in the lowest-energy optic phonon very near the zone center around (111) in the multiferroic BiFeO$_3$ using neutron scattering methods. The phonon scattering intensity is enhanced when antiferroma gnetic (AFM) order sets in at T$_N = 640$~K, and it increases on cooling. This resonance is confined to a very narrow region in energy-momentum space where no spin-wave excitation intensity is expected, and it can be modified by an external magnetic field. Our results suggest the existence of a novel coupling between the lattice and spin fluctuations in this multiferroic system in which the spin-wave excitations are mapped onto the lattice vibrations via the Dzyaloshinskii-Moriya (DM) interaction.
Low-energy magnon excitations in multiferroic BiFeO$_3$ were measured in detail as a function of temperature around several Brillouin zone centers by inelastic neutron scattering experiments on single crystals. Unique features around 1 meV are direct ly associated with the interplay of the Dzyaloshinskii-Moriya interaction and a small single-ion anisotropy. The temperature dependence of these and the exchange interactions were determined by fitting the measured magnon dispersion with spin-wave calculations. The spectra best fits an easy-axis type magnetic anisotropy and the deduced exchange and anisotropy parameters enable us to determine the anharmonicity of the magnetic cycloid. We then draw a direct connection between the changes in the parameters of spin Hamiltonian with temperature and the physical properties and structural deformations of BiFeO$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا