ترغب بنشر مسار تعليمي؟ اضغط هنا

CO luminosity - line width correlation of sub-millimeter galaxies and a possible cosmological application

190   0   0.0 ( 0 )
 نشر من قبل Tomotsugu Goto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tomotsugu Goto




اسأل ChatGPT حول البحث

Context. A possible correlation between CO luminosity (L_CO ) and its line width (FWHM) has been suggested and denied in the literature. Such claims were often based on a small, or heterogeneous sample of galaxies, and thus inconclusive. Aims. We aim to prove or dis-prove the L_CO -FWHM correlation. Methods. We compile a large sample of submm galaxies at z>2 from the literature, and investigate the L_CO-FWHM relation. Results. After carefully evaluating the selection effects and uncertainties such as inclination and magnification via gravitational lensing, we show that there exist a weak but significant correlation between L_CO and FWHM. We also discuss a feasibility to measure the cosmological distance using the correlation.



قيم البحث

اقرأ أيضاً

A linear correlation has been proposed between the CO luminosity ($rm{L}^{prime}_{rm{CO}}$) and full-width at half maximum (FWHM) for high-redshift (z > 1) submillimeter galaxies. However, the controversy concerning the $rm{L}^{prime}_{rm{CO}}$-FWHM correlation seems to have been caused by the use of heterogeneous samples (e.g., different transition lines) and/or data with large measurement uncertainties. In order to avoid the uncertainty caused by using different rotational transitions, in this work we make an extensive effort to select only CO($J = 1-0$) data from the literature. We separate these wide-ranging redshift data into two samples : the low-redshift (z < 1) and high-redshift (z > 1) samples. The samples are corrected for lensing magnification factors if gravitational-lensing effects appeared in the observations. The correlation analysis shows that there exists significant $rm{L}^{prime}_{rm{CO}}$-FWHM correlations for both the low-redshift and high-redshift samples. A comparison of the low- and high-redshift $rm{L}^{prime}_{rm{CO}}$-FWHM correlations does not show strong evolution with redshift. Assuming that there is no evolution, we can use this relation to determine the model independent distances of high-redshift galaxies. We then constrain cosmological models with the calibrated high-redshift CO data and the sample of Type Ia supernovae in the Union 2.1 compilation. In the constraint for wCDM with our samples, the derived values are w_{0} = -1.02 {pm} 0.17, {Omega}_{m0} = 0.30{pm}0.02, and H_{0} = 70.00 {pm}0.60 km,s^{-1},Mpc^{-1}.
147 - S. Toft , V. Smolcic , B. Magnelli 2014
Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3<z<6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimeter selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, representative spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are consistent with being the progenitors of z=2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.
We present the sub-millimeter spectra from 450 GHz to 1550 GHz of eleven nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. We detect CO transitions from J_up = 4 to 12, as well as the two [CI] fine structure lines at 492 and 809 GHz and the [NII] 461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions (SLEDs). The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions has similar physical conditions (n_H2 ~ 10^3.2 - 10^3.9 cm^-3 and T_kin ~ 300 - 800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H2 emission. We could not determine the specific heating mechanism of the warm gas, however it is possibly related to the star-formation activity in these galaxies. Our modeling of the [CI] emission suggests that it is produced in cold (T_kin < 30 K) and dense (n_H2 > 10^3 cm^-3) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J=1-0 transition at 1232 GHz is detected in absorption in UGC05101 and in emission in NGC7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the AGN of this galaxy. In some galaxies few H2O emission lines are present. Additionally, three OH+ lines at 909, 971, and 1033 GHz are identified in NGC7130.
We present cosmological hydrodynamic simulations of a quasar-mass halo ($M_{rm halo} approx 10^{12.5},{rm M}_{odot}$ at z=2) that for the first time resolve gas transport down to the inner 0.1 pc surrounding the central massive black hole. We model a multi-phase interstellar medium including stellar feedback by supernovae, stellar winds, and radiation, and a hyper-Lagrangian refinement technique increasing the resolution dynamically approaching the black hole. We do not include black hole feedback. We show that the sub-pc inflow rate (1) can reach ~6 M$_{odot}$yr$^{-1}$ roughly in steady state during the epoch of peak nuclear gas density (z~2), sufficient to power a luminous quasar, (2) is highly time variable in the pre-quasar phase, spanning 0.001-10 M$_{odot}$yr$^{-1}$ on Myr timescales, and (3) is limited to short (~2 Myr) active phases (0.01-0.1 M$_{odot}$yr$^{-1}$) followed by longer periods of inactivity at lower nuclear gas density and late times (z~1), owing to the formation of a hot central cavity. Inflowing gas is primarily cool, rotational support dominates over turbulence and thermal pressure, and star formation can consume as much gas as provided by inflows across 1 pc - 10 kpc. Gravitational torques from multi-scale stellar non-axisymmetries dominate angular momentum transport over gas self-torquing and pressure gradients, with accretion weakly dependent on black hole mass. Sub-pc inflow rates correlate with nuclear (but decouple from global) star formation and can exceed the Eddington rate by x10. The black hole can move ~10 pc from the galaxy center on ~0.1 Myr. Accreting gas forms pc-scale, rotationally supported, obscuring structures often misaligned with the galaxy-scale disk. These simulations open a new avenue to investigate black hole-galaxy co-evolution.
72 - Fazeel M. Khan 2016
Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So f ar theoretical models and simulations have been unable to predict directly the SMBH merger timescale from ab-initio galaxy formation theory, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave searches. Here we present the first multi-scale $Lambda$CDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at $zsim3$, all the way to the final coalescence driven by gravitational wave emission. The two SMBHs, with masses $sim10^{8}$ M$_{odot}$, settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only $sim10$ Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا