ترغب بنشر مسار تعليمي؟ اضغط هنا

Meridional Flow in the Solar Convection Zone II: Helioseismic Inversions of GONG Data

133   0   0.0 ( 0 )
 نشر من قبل Jason Jackiewicz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

349 - S.P. Rajaguru TIFR 2015
We present and discuss results from time-distance helioseismic measurements of meridional circulation in the solar convection zone using 4 years of Doppler velocity observations by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Using an in-built mass conservation constraint in terms of the stream function we invert helioseismic travel times to infer meridional circulation in the solar convection zone. We find that the return flow that closes the meridional circulation is possibly beneath the depth of $0.77 R_{odot}$. We discuss the significance of this result in relation to other helioseismic inferences published recently and possible reasons for the differences in the results. Our results show clearly the pitfalls involved in the measurements of material flows in the deep solar interior given the current limits on signal-to-noise and our limited understanding of systematics in the data. We also discuss the implications of our results for the dynamics of solar interior and popular solar dynamo models.
Recent advances in helioseismology, numerical simulations and mean-field theory of solar differential rotation have shown that the meridional circulation pattern may consist of two or more cells in each hemisphere of the convection zone. According to the mean-field theory the double-cell circulation pattern can result from the sign inversion of a nondiffusive part of the radial angular momentum transport (the so-called $Lambda$-effect) in the lower part of the solar convection zone. Here, we show that this phenomenon {can result} from the radial inhomogeneity of the Coriolis number, which depends on the convective turnover time. We demonstrate that if this effect is taken into account then the solar-like differential rotation and the double-cell meridional circulation are both reproduced by the mean-field model. The model is consistent with the distribution of turbulent velocity correlations determined from observations by tracing motions of sunspots and large-scale magnetic fields, indicating that these tracers are rooted just below the shear layer.
Accurate inference of solar meridional flow is of crucial importance for the understanding of solar dynamo process. Wave travel times, as measured on the surface, will change if the waves encounter perturbations e.g. in the sound speed or flows, as t hey propagate through the solar interior. Using functions called sensitivity kernels, we may image the underlying anomalies that cause measured shifts in travel times. The inference of large-scale structures e.g meridional circulation requires computing sensitivity kernels in spherical geometry. Mandal et al. (2017) have computed such spherical kernels in the limit of the first-Born approximation. In this work, we perform an inversion for meridional circulation using travel-time measurements obtained from 6 years of SDO/HMI data and those sensitivity kernels. We enforce mass conservation by inverting for a stream function. The number of free parameters is reduced by projecting the solution on to cubic B-splines in radius and derivatives of the Legendre-polynomial basis in latitude, thereby improving the condition number of the inverse problem. We validate our approach for synthetic observations before performing the actual inversion. The inversion suggests a single-cell profile with the return-flow occurring at depths below 0.78 $R_odot$.
Accurate determination of the rotation rate in the radiative zone of the sun from helioseismic observations requires rotational frequency splittings of exceptional quality as well as reliable inversion techniques. We present here inferences based on mode parameters calculated from 2088-days long MDI, GONG and GOLF time series that were fitted to estimate very low frequency rotational splittings (nu < 1.7 mHz). These low frequency modes provide data of exceptional quality, since the width of the mode peaks is much smaller than the rotational splitting and hence it is much easier to separate the rotational splittings from the effects caused by the finite lifetime and the stochastic excitation of the modes. We also have implemented a new inversion methodology that allows us to infer the rotation rate of the radiative interior from mode sets that span l=1 to 25. Our results are compatible with the sun rotating like a rigid solid in most of the radiative zone and slowing down in the core (R_sun < 0.2). A resolution analysis of the inversion was carried out for the solar rotation inverse problem. This analysis effectively establishes a direct relationship between the mode set included in the inversion and the sensitivity and information content of the resulting inferences. We show that such an approach allows us to determine the effect of adding low frequency and low degree p-modes, high frequency and low degree p-modes, as well as some g-modes on the derived rotation rate in the solar radiative zone, and in particular the solar core. We conclude that the level of uncertainties that is needed to infer the dynamical conditions in the core when only p-modes are included is unlikely to be reached in the near future, and hence sustained efforts are needed towards the detection and characterization of g-modes.
Using a 3D global solver of the linearized Euler equations, we model acoustic oscillations over background velocity flow fields of single-cell meridional circulation with deep and shallow return flows as well as a double-cell meridional circulation p rofile. The velocities are generated using a mean-field hydrodynamic and dynamo model -- moving through the regimes with minimal parameter changes; counter-rotation near the base of the tachocline is induced by sign inversion of the non-diffusive action of turbulent Reynolds stresses ($Lambda$-effect) due to the radial inhomogeneity of the Coriolis number. By mimicking the stochastic excitation of resonant modes in the convective interior, we simulate realization noise present in solar observations. Using deep-focusing to analyze differences in travel-time signatures between the three regimes, as well as comparing to solar observations, we show that current helioseismology techniques may offer important insights about the location of the return flow, however, that it may not be possible to definitively distinguish between profiles of single-cell or double-cell meridional circulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا