ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical-physics applications for Finsler $b$ space

48   0   0.0 ( 0 )
 نشر من قبل Joshua Foster
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler $b$ space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler $b$ space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler $b$ spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

قيم البحث

اقرأ أيضاً

Within all approaches to quantum gravity small violations of the Einstein Equivalence Principle are expected. This includes violations of Lorentz invariance. While usually violations of Lorentz invariance are introduced through the coupling to additi onal tensor fields, here a Finslerian approach is employed where violations of Lorentz invariance are incorporated as an integral part of the space-time metrics. Within such a Finslerian framework a modified dispersion relation is derived which is confronted with current high precision experiments. As a result, Finsler type deviations from the Minkowskian metric are excluded with an accuracy of 10^{-16}.
63 - Ognjen Ilic 2020
Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch a nd deployment, represent a multifaceted set of challenges. The materials we engineer must not only meet these challenges, but they need to do so while keeping overall mass to a minimum and guaranteeing performance over long periods of time with no opportunity for repair. Nanophotonic materials -- materials that embody structural variations on a scale comparable to the wavelength of light -- offer opportunities for addressing some of these difficulties. Here, we examine how advances in nanophotonics and nanofabrication are enabling ultrathin and lightweight structures with unparalleled ability to shape light-matter interactions over a broad electromagnetic spectrum. From solar panels that can be fabricated in space to applications of light for propulsion, the next generation of lightweight and multifunctional photonic materials stands to both impact existing technologies and pave the way for new space technologies.
169 - Neil Russell 2015
A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety of novel lagrangians in flat spacetime. Morphisms in these classical systems are studied that echo invariance under field redefinitions in the quantized theory. The Lagrange functions found offer new possibilities for understanding Lorentz-breaking effects by exploring parallels with Finsler-like geometries.
45 - A. D. Boozer 2008
The time evolution of a charged point particle is governed by a second-order integro-differential equation that exhibits advanced effects, in which the particle responds to an external force before the force is applied. In this paper we give a simple physical argument that clarifies the origin and physical meaning of these advanced effects, and we compare ordinary electrodynamics with a toy model of electrodynamics in which advanced effects do not occur.
We briefly show how classical mechanics can be rederived and better understood as a consequence of three assumptions: infinitesimal reducibility, deterministic and reversible evolution, and kinematic equivalence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا