ﻻ يوجد ملخص باللغة العربية
Positioning of nucleosomes along eukaryotic genomes plays an important role in their organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study we analyzed how well nucleosomes are positioned along the DNA as a function of strength of the preferential binding, correlation length of the binding energy landscape, interactions between neighboring nucleosomes and others relevant system properties. We analyze different scenarios: designed energy landscapes and generically disordered ones and derive conditions for good positioning. Using analytic and numerical approaches we find that, even if the binding preferences are very weak, synergistic interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing empirical energy landscape, we discuss relevance of our theoretical results to positioning of nucleosomes on DNA emph{in vivo.}
Transcription is the first step of gene expression, in which a particular segment of DNA is copied to RNA by the enzyme RNA polymerase (RNAP). Despite many details of the complex interactions between DNA and RNA synthesis disclosed experimentally, mu
The Hill coefficient is often used as a direct measure of the cooperativity of binding processes. It is an essential tool for probing properties of reactions in many biochemical systems. Here we analyze existing experimental data and demonstrate that
In gene expression, various kinds of proteins need to bind to specific locus of DNA. It is still not clear how these proteins find their target locus. In this study, the mean first-passage time (FPT) of protein binding to its target locus on DNA chai
DNA is a flexible molecule, but the degree of its flexibility is subject to debate. The commonly-accepted persistence length of $l_p approx 500,$AA is inconsistent with recent studies on short-chain DNA that show much greater flexibility but do not p
The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalen