ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing images of Galois representations attached to elliptic curves

213   0   0.0 ( 0 )
 نشر من قبل Andrew Sutherland
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let E be an elliptic curve without complex multiplication (CM) over a number field K, and let G_E(ell) be the image of the Galois representation induced by the action of the absolute Galois group of K on the ell-torsion subgroup of E. We present two probabilistic algorithms to simultaneously determine G_E(ell) up to local conjugacy for all primes ell by sampling images of Frobenius elements; one is of Las Vegas type and the other is a Monte Carlo algorithm. They determine G_E(ell) up to one of at most two isomorphic conjugacy classes of subgroups of GL_2(Z/ell Z) that have the same semisimplification, each of which occurs for an elliptic curve isogenous to E. Under the GRH, their running times are polynomial in the bit-size n of an integral Weierstrass equation for E, and for our Monte Carlo algorithm, quasi-linear in n. We have applied our algorithms to the non-CM elliptic curves in Cremonas tables and the Stein--Watkins database, some 140 million curves of conductor up to 10^10, thereby obtaining a conjecturally complete list of 63 exceptional Galois images G_E(ell) that arise for E/Q without CM. Under this conjecture we determine a complete list of 160 exceptional Galois images G_E(ell) the arise for non-CM elliptic curves over quadratic fields with rational j-invariants. We also give examples of exceptional Galois images that arise for non-CM elliptic curves over quadratic fields only when the j-invariant is irrational.



قيم البحث

اقرأ أيضاً

We give a classification of the cuspidal automorphic representations attached to rational elliptic curves with a non-trivial torsion point of odd order. Such elliptic curves are parameterizable, and in this paper, we find the necessary and sufficient conditions on the parameters to determine when split or non-split multiplicative reduction occurs. Using this and the known results on when additive reduction occurs for these parametrized curves, we classify the automorphic representations in terms of the parameters.
We discuss the $ell$-adic case of Mazurs Program B over $mathbb{Q}$, the problem of classifying the possible images of $ell$-adic Galois representations attached to elliptic curves $E$ over $mathbb{Q}$, equivalently, classifying the rational points o n the corresponding modular curves. The primes $ell=2$ and $ellge 13$ are addressed by prior work, so we focus on the remaining primes $ell = 3, 5, 7, 11$. For each of these $ell$, we compute the directed graph of arithmetically maximal $ell$-power level modular curves, compute explicit equations for most of them, and classify the rational points on all of them except $X_{{rm ns}}^{+}(N)$, for $N = 27, 25, 49, 121$, and two level $49$ curves of genus $9$ whose Jacobians have analytic rank $9$. Aside from the $ell$-adic images that are known to arise for infinitely many $overline{mathbb{Q}}$-isomorphism classes of elliptic curves $E/mathbb{Q}$, we find only 22 exceptional subgroups that arise for any prime $ell$ and any $E/mathbb{Q}$ without complex multiplication; these exceptional subgroups are realized by 20 non-CM rational $j$-invariants. We conjecture that this list of 22 exceptional subgroups is complete and show that any counterexamples must arise from unexpected rational points on $X_{rm ns}^+(ell)$ with $ellge 17$, or one of the six modular curves noted above. This gives us an efficient algorithm to compute the $ell$-adic images of Galois for any non-CM elliptic curve over $mathbb{Q}$. In an appendix with John Voight we generalize Ribets observation that simple abelian varieties attached to newforms on $Gamma_1(N)$ are of ${rm GL}_2$-type; this extends Kolyvagins theorem that analytic rank zero implies algebraic rank zero to isogeny factors of the Jacobian of $X_H$.
Let $mathcal{G}$ be a connected reductive almost simple group over the Witt ring $W(mathbb{F})$ for $mathbb{F}$ a finite field of characteristic $p$. Let $R$ and $R$ be complete noetherian local $W(mathbb{F})$ -algebras with residue field $mathbb{F}$ . Under a mild condition on $p$ in relation to structural constants of $mathcal{G}$, we show the following results: (1) Every closed subgroup $H$ of $mathcal{G}(R)$ with full residual image $mathcal{G}(mathbb{F})$ is a conjugate of a group $mathcal{G}(A)$ for $Asubset R$ a closed subring that is local and has residue field $mathbb{F}$ . (2) Every surjective homomorphism $mathcal{G}(R)tomathcal{G}(R)$ is, up to conjugation, induced from a ring homomorphism $Rto R$. (3) The identity map on $mathcal{G}(R)$ represents the universal deformation of the representation of the profinite group $mathcal{G}(R)$ given by the reduction map $mathcal{G}(R)tomathcal{G}(mathbb{F})$. This generalizes results of Dorobisz and Eardley-Manoharmayum and of Manoharmayum, and in addition provides an abstract classification result for closed subgroups of $mathcal{G}(R)$ with residually full image. We provide an axiomatic framework to study this type of question, also for slightly more general $mathcal{G}$, and we study in the case at hand in great detail what conditions on $mathbb{F}$ or on $p$ in relation to $mathcal{G}$ are necessary for the above results to hold.
Let E/Q be an elliptic curve and p be a prime number, and let G be the Galois group of the extension of Q obtained by adjoining the coordinates of the p-torsion points on E. We determine all cases when the Galois cohomology group H^1(G, E[p]) does no t vanish, and investigate the analogous question for E[p^i] when i>1. We include an application to the verification of certain cases of the Birch and Swinnerton-Dyer conjecture, and another application to the Grunwald-Wang problem for elliptic curves.
This article is the first part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. In this first part, we determine the smallest field over which the projectivi sation of a given symplectic group representation satisfying some natural conditions can be defined. The answer only depends on inner twists. We apply this to the residual representations of a compatible system of symplectic Galois representations satisfying some mild hypothesis and obtain precise information on their projective images for almost all members of the system, under the assumption of huge residual images, by which we mean that a symplectic group of full dimension over the prime field is contained up to conjugation. Finally, we obtain an application to the inverse Galois problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا