ﻻ يوجد ملخص باللغة العربية
Let E be an elliptic curve without complex multiplication (CM) over a number field K, and let G_E(ell) be the image of the Galois representation induced by the action of the absolute Galois group of K on the ell-torsion subgroup of E. We present two probabilistic algorithms to simultaneously determine G_E(ell) up to local conjugacy for all primes ell by sampling images of Frobenius elements; one is of Las Vegas type and the other is a Monte Carlo algorithm. They determine G_E(ell) up to one of at most two isomorphic conjugacy classes of subgroups of GL_2(Z/ell Z) that have the same semisimplification, each of which occurs for an elliptic curve isogenous to E. Under the GRH, their running times are polynomial in the bit-size n of an integral Weierstrass equation for E, and for our Monte Carlo algorithm, quasi-linear in n. We have applied our algorithms to the non-CM elliptic curves in Cremonas tables and the Stein--Watkins database, some 140 million curves of conductor up to 10^10, thereby obtaining a conjecturally complete list of 63 exceptional Galois images G_E(ell) that arise for E/Q without CM. Under this conjecture we determine a complete list of 160 exceptional Galois images G_E(ell) the arise for non-CM elliptic curves over quadratic fields with rational j-invariants. We also give examples of exceptional Galois images that arise for non-CM elliptic curves over quadratic fields only when the j-invariant is irrational.
We give a classification of the cuspidal automorphic representations attached to rational elliptic curves with a non-trivial torsion point of odd order. Such elliptic curves are parameterizable, and in this paper, we find the necessary and sufficient
We discuss the $ell$-adic case of Mazurs Program B over $mathbb{Q}$, the problem of classifying the possible images of $ell$-adic Galois representations attached to elliptic curves $E$ over $mathbb{Q}$, equivalently, classifying the rational points o
Let $mathcal{G}$ be a connected reductive almost simple group over the Witt ring $W(mathbb{F})$ for $mathbb{F}$ a finite field of characteristic $p$. Let $R$ and $R$ be complete noetherian local $W(mathbb{F})$ -algebras with residue field $mathbb{F}$
Let E/Q be an elliptic curve and p be a prime number, and let G be the Galois group of the extension of Q obtained by adjoining the coordinates of the p-torsion points on E. We determine all cases when the Galois cohomology group H^1(G, E[p]) does no
This article is the first part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. In this first part, we determine the smallest field over which the projectivi