ﻻ يوجد ملخص باللغة العربية
We derive an analytic expression for one-loop effective action of QCD+QED at zero and finite temperatures by using the Schwingers proper time method. The result is a nonlinear effective action not only for electromagnetic and chromo-electromagnetic fields but also the Polyakov loop, and thus reproduces the Euler-Heisenberg action in QED, QCD, and QED+QCD, and also the Weiss potential for the Polyakov loop at finite temperature. As applications of this Euler-Heisenberg-Weiss action in QCD+QED, we investigate quark pair productions induced by QCD+QED fields at zero temperature and the Polyakov loop in the presence of strong electromagnetic fields. Quark one-loop contribution to the effective potential of the Polyakov loop explicitly breaks the center symmetry, and is found to be enhanced by the magnetic field, which is consistent with the inverse magnetic catalysis observed in lattice QCD simulation.
We investigate the Landau-level structures encoded in the famous Heisenberg-Euler (HE) effective action in constant electromagnetic fields. We first discuss the HE effective actions for scalar and spinor QED, and then extend it to the QCD analogue in
In this paper we calculate the non-perturbative Euler-Heisenberg Lagrangian for massless QED in a strong magnetic field $H$, where the breaking of the chiral symmetry is dynamically catalyzed by the external magnetic field via the formation of an ele
A generalized Heisenberg-Euler formula is given for an Abelian gauge theory having vector as well as axial vector couplings to a massive fermion. So, the formula is applicable to a parity-violating theory. The gauge group is chosen to be $U(1)$. The
Applying exact QCD sum rules for the baryon charge and energy-momentum we demonstrate that if nucleons are the only degrees of freedom of nuclear wave function, the structure function of a nucleus would be the additive sum of the nucleon distribution