ترغب بنشر مسار تعليمي؟ اضغط هنا

QoS-Based Pricing and Scheduling of Batch Jobs in OpenStack Clouds

113   0   0.0 ( 0 )
 نشر من قبل Thomas Sandholm
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The current Cloud infrastructure services (IaaS) market employs a resource-based selling model: customers rent nodes from the provider and pay per-node per-unit-time. This selling model places the burden upon customers to predict their job resource requirements and durations. Inaccurate prediction by customers can result in over-provisioning of resources, or under-provisioning and poor job performance. Thanks to improved resource virtualization and multi-tenant performance isolation, as well as common frameworks for batch jobs, such as MapReduce, Cloud providers can predict job completion times more accurately. We offer a new definition of QoS-levels in terms of job completion times and we present a new QoS-based selling mechanism for batch jobs in a multi-tenant OpenStack cluster. Our experiments show that the QoS-based solution yields up to 40% improvement over the revenue of more standard selling mechanisms based on a fixed per-node price across various demand and supply conditions in a 240-VCPU OpenStack cluster.



قيم البحث

اقرأ أيضاً

A fundamental goal in the design of IaaS service is to enable both user-friendly and cost-effective service access, while attaining high resource efficiency for revenue maximization. QoS differentiation is an important lens to achieve this design goa l. In this paper, we propose the first analytical QoS-differentiated resource management and pricing architecture in the cloud computing context; here, a cloud service provider (CSP) offers a portfolio of SLAs. In order to maximize the CSPs revenue, we address two technical questions: (1) how to set the SLA prices so as to direct users to the SLAs best fitting their needs, and, (2) determining how many servers should be assigned to each SLA, and which users and how many of their jobs are admitted to be served. We propose optimal schemes to jointly determine SLA-based prices and perform capacity planning in polynomial time. Our pricing model retains high usability at the customers end. Compared with standard usage-based pricing schemes, numerical results show that the proposed scheme can improve the revenue by up to a five-fold increase.
Efficient GPU resource scheduling is essential to maximize resource utilization and save training costs for the increasing amount of deep learning workloads in shared GPU clusters. Existing GPU schedulers largely rely on static policies to leverage t he performance characteristics of deep learning jobs. However, they can hardly reach optimal efficiency due to the lack of elasticity. To address the problem, we propose ONES, an ONline Evolutionary Scheduler for elastic batch size orchestration. ONES automatically manages the elasticity of each job based on the training batch size, so as to maximize GPU utilization and improve scheduling efficiency. It determines the batch size for each job through an online evolutionary search that can continuously optimize the scheduling decisions. We evaluate the effectiveness of ONES with 64 GPUs on TACCs Longhorn supercomputers. The results show that ONES can outperform the prior deep learning schedulers with a significantly shorter average job completion time.
In this paper, we study the market-oriented online bi-objective service scheduling problem for pleasingly parallel jobs with variable resources in cloud environments, from the perspective of SaaS (Software-as-as-Service) providers who provide job-exe cution services. The main process of scheduling SaaS services in clouds is: a SaaS provider purchases cloud instances from IaaS providers to schedule end users jobs and charges users accordingly. This problem has several particular features, such as the job-oriented end users, the pleasingly parallel jobs with soft deadline constraints, the online settings, and the variable numbers of resources. For maximizing both the revenue and the user satisfaction rate, we design an online algorithm for SaaS providers to optimally purchase IaaS instances and schedule pleasingly parallel jobs. The proposed algorithm can achieve competitive objectives in polynomial run-time. The theoretical analysis and simulations based on real-world Google job traces as well as synthetic datasets validate the effectiveness and efficiency of our algorithm.
We describe some of the key aspects of the SAMGrid system, used by the D0 and CDF experiments at Fermilab. Having sustained success of the data handling part of SAMGrid, we have developed new services for job and information services. Our job managem ent is rooted in CondorG and uses enhancements that are general applicability for HEP grids. Our information system is based on a uniform framework for configuration management based on XML data representation and processing.
Job submissions of parallel applications to production supercomputer systems will have to be carefully tuned in terms of the job submission parameters to obtain minimum response times. In this work, we have developed an end-to-end resource management framework that uses predictions of queue waiting and execution times to minimize response times of user jobs submitted to supercomputer systems. Our method for predicting queue waiting times adaptively chooses a prediction method based on the cluster structure of similar jobs. Our strategy for execution time predictions dynamically learns the impact of load on execution times and uses this to predict a set of execution time ranges for the target job. We have developed two resource management techniques that employ these predictions, one that selects the number of processors for execution and the other that also dynamically changes the job submission time. Using workload simulations of large supercomputer traces, we show large-scale improvements in predictions and reductions in response times over existing techniques and baseline strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا