ﻻ يوجد ملخص باللغة العربية
We reason that, without physical fine-tuning, neither the supermassive black holes (SMBHs) nor the stellar bulges can self-regulate or inter-regulate by driving away already fallen cold gas to produce the observed correlation between them. We suggest an alternative scenario where the observed mass ratios of the SMBHs to bulges reflect the angular momentum distribution of infallen gas such that the mass reaching the stable accretion disc is a small fraction of that reaching the bulge region, averaged over the cosmological time scales. We test this scenario using high resolution, large-scale cosmological hydrodynamic simulations (without AGN feedback), assuming the angular momentum distribution of gas landing in the bulge region to yield a Mestel disc that is supported by independent simulations resolving the Bondi radii of SMBHs. A mass ratio of $0.1-0.3%$ between the very low angular momentum gas that free-falls to the sub-parsec region to accrete to the SMBH and the overall star formation rate is found. This ratio is found to increase with increasing redshift to within a factor of $sim 2$, suggesting that the SMBH to bulge ratio is nearly redshift independent, with a modest increase with redshift, a testable prediction. Furthermore, the duty cycle of active galactic nuclei (AGN) with high Eddington ratios is expected to increase significantly with redshift. Finally, while SMBHs and bulges are found to coevolve on $sim 30-150$Myr time scales or longer, there is indication that, on shorer time scales, the SMBH accretion rate and star formation may be less correlated.
Davies et al. (2019) established that for L^* galaxies the fraction of baryons in the circumgalactic medium (CGM) is inversely correlated with the mass of their central supermassive black holes (BHs) in the EAGLE hydrodynamic simulation. The interpre
We present a general sufficient condition for the formation of black holes due to concentration of angular momentum. This is expressed in the form of a universal inequality, relating the size and angular momentum of bodies, and is proven in the conte
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity fun
We ask how the inclusion of various physical heating processes due to the metal content of gas affect the evolution of massive galaxies and compute a suite of cosmological hydrodynamical simulations that follow these systems and their supermassive bl
The importance of the radiative feedback from SMBHs at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. In addition, feedback due to