ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Method to Determine Magnetic Fields in low-density Plasma e.g. Solar Flares Facilitated Through Accidental Degeneracy of Quantum States in Fe$^{9+}$

99   0   0.0 ( 0 )
 نشر من قبل Wenxian Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new method to determine magnetic fields, by using the magnetic-field induced electric dipole transition $3p^43d,^4mathrm{D}_{7/2}$ $rightarrow$ $3p^5, ^2mathrm{P}_{3/2}$ in Fe$^{9+}$ ions. This ion has a high abundance in astrophysical plasma and is therefore well-suited for direct measurements of even rather weak fields in e.g. solar flares. This transition is induced by an external magnetic field and its rate is proportional to the square of the magnetic field strength. We present theoretical values for what we will label the reduced rate and propose that the critical energy difference between the upper level in this transition and the close to degenerate $3p^43d, ^4mathrm{D}_{5/2}$ should be measured experimentally since it is required to determine the relative intensity of this magnetic line for different magnetic fields.


قيم البحث

اقرأ أيضاً

405 - Ze-Guo Chen , Xu Ni , Ying Wu 2014
Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of Brillouin zo ne (BZ) in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of such quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique wave propagating properties, such as defect insensitive propagating character and Talbot effect.
It remains unclear how solar flares are triggered and in what conditions they can be eruptive with coronal mass ejections. Magnetic flux ropes (MFRs) has been suggested as the central magnetic structure of solar eruptions, and their ideal instabiliti es including mainly the kink instability (KI) and torus instability (TI) provide important candidates for triggering mechanisms. Here using magnetic field extrapolations from observed photospheric magnetograms, we systematically studied the variation of coronal magnetic fields, focusing on MFRs, through major flares including 29 eruptive and 16 confined events. We found that nearly 90% events possess MFR before flare and 70% have MFR even after flare. We calculated the controlling parameters of KI and TI, including the MFRs maximum twist number and the decay index of its strapping field. Using the KI and TI thresholds empirically derived from solely the pre-flare MFRs, two distinct different regimes are shown in the variation of the MFR controlling parameters through flares. For the events with both parameters below their thresholds before flare, we found no systematic change of the parameters after the flares, in either the eruptive or confined events. In contrast, for the events with any of the two parameters exceeding their threshold before flare (most of them are eruptive), there is systematic decrease in the parameters to below their thresholds after flares. These results provide a strong constraint for the values of the instability thresholds and also stress the necessity of exploring other eruption mechanisms in addition to the ideal instabilities.
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr y. The high number of symmetries (both geometrical and dynamical) exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics). We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
Inelastic neutron scattering recently confirmed the theoretical prediction of a $uparrowuparrowdownarrowdownarrow$-magnetic state along the legs of quasi-one-dimensional (quasi-1D) iron-based ladders in the orbital-selective Mott phase (OSMP). We sho w here that electron-doping of the OSMP induces a whole class of novel block-states with a variety of periodicities beyond the previously reported $pi/2$ pattern. We discuss the magnetic phase diagram of the OSMP regime that could be tested by neutrons once appropriate quasi-1D quantum materials with the appropriate dopings are identified.
The motional electric field experienced by an H2+ ion moving in a magnetic field induces an electric dipole, so that one-photon dipole transitions between rovibrational states become allowed. Field induced spontaneous decay rates are calculated for a wide range of states. For an ion stored in a high-field (B ~ 10 T) Penning trap, it is shown that the lifetimes of excited rovibrational states can be shortened by typically 1-3 orders of magnitude by placing the ion in a large cyclotron orbit. This can greatly facilitate recently proposed [E. G. Myers, Phys. Rev. A 98, 010101 (2018)] high-precision spectroscopic measurements on H2+ and its antimatter counterpart for tests of CPT symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا