ﻻ يوجد ملخص باللغة العربية
We have investigated low-temperature electronic transport on InAs/GaSb double quantum wells, a system which promises to be electrically tunable from a normal to a topological insulator. Hall bars of $50,mu$m in length down to a few $mu$m gradually develop a pronounced resistance plateau near charge-neutrality, which comes along with distinct non-local transport along the edges. Plateau resistances are found to be above or below the quantized value expected for helical edge channels. We discuss these results based on the interplay between imperfect edges and residual local bulk conductivity.
The robustness of quantum edge transport in InAs/GaSb quantum wells in the presence of magnetic fields raises an issue on the fate of topological phases of matter under time-reversal symmetry breaking. A peculiar band structure evolution in InAs/GaSb
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and c
We present transport and scanning SQUID measurements on InAs/GaSb double quantum wells, a system predicted to be a two-dimensional topological insulator. Top and back gates allow independent control of density and band offset, allowing tuning from th
We have studied a series of InAs/GaSb coupled quantum wells using magneto-infrared spectroscopy for high magnetic fields up to 33T within temperatures ranging from 4K to 45K in both Faraday and tilted field geometries. This type of coupled quantum we
The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr doped (Bi,Sb)$_2$Te$_3$ at a low temperature ($sim$ 30mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional dilut