ﻻ يوجد ملخص باللغة العربية
Several popular Ansatze of lepton mass matrices that contain texture zeros are confronted with current neutrino observational data. We perform a systematic $chi^2$-analysis in a wide class of schemes, considering arbitrary Hermitian charged lepton mass matrices and symmetric mass matrices for Majorana neutrinos or Hermitian mass matrices for Dirac neutrinos. Our study reveals that several patterns are still consistent with all the observations at 68.27% confidence level, while some others are disfavored or excluded by the experimental data. The well-known Frampton-Glashow-Marfatia two-zero textures, hybrid textures and parallel structures, among others, are considered.
We consider the possibility of texture zeros in lepton mass matrices of the minimal left-right symmetric model (LRSM) where light neutrino mass arises from a combination of type I and type II seesaw mechanisms. Based on the allowed texture zeros in l
We propose a simple extension of the electroweak standard model based on the discrete $S_3$ symmetry that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of both charged leptons and neutrinos. This is achiev
We perform a systematic analysis of all possible texture zeros in general and symmetric quark mass matrices. Using the values of masses and mixing parameters at the electroweak scale, we identify for both cases the maximally restrictive viable textur
We investigate scaling ansatz with texture zeros within the framework of linear seesaw mechanism. In this variant of seesaw mechanism a simplified expression of effective neutrino mass matrix $m_ u$ containing two Dirac type matrices ($m_D$ and $m_{D
We propose a model that all quark and lepton mass matrices have the same zero texture. Namely their (1,1), (1,3) and (3,1) components are zeros. The mass matrices are classified into two types I and II. Type I is consistent with the experimental data