ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-scales of close-in exoplanet radio emission variability

126   0   0.0 ( 0 )
 نشر من قبل Victor See
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and tau Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetised hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is co-rotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of tau Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at tau Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.



قيم البحث

اقرأ أيضاً

We report the time variability of the late-time radio emission in a Type-I superluminous supernova (SLSN), PTF10hgi, at z = 0.0987. The Karl G. Jansky Very Large Array 3 GHz observations at 8.6 and 10 years after the explosion both detected radio emi ssion with a ~40% decrease in flux density in the second epoch. This is the first report of a significant variability of the late-time radio light curve in a SLSN. Through combination with previous measurements in two other epochs, we constrained both the rise and decay phases of the radio light curve over three years, peaking at approximately 8-9 years after the explosion with a peak luminosity of L(3GHz) = 2 x 10^21 W/Hz. Possible scenarios for the origin of the variability are an active galactic nucleus (AGN) in the host galaxy, an afterglow caused by the interaction between an off-axis jet and circumstellar medium, and a wind nebula powered by a newly-born magnetar. Comparisons with models show that the radio light curve can be reproduced by both the afterglow model and magnetar wind nebula model. Considering the flat radio spectrum at 1-15 GHz and an upper limit at 0.6 GHz obtained in previous studies, plausible scenarios are a low-luminosity flat-spectrum AGN or a magnetar wind nebula with a shallow injection spectral index.
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Keplers third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with {other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
We present the results of photometric observations of three TeV blazars, 3C 66A, S5 0954+658 and BL Lacertae, during the period 2013--2017. Our extensive observations were performed in a total of 360 nights which produced $sim$6820 image frames in BV RI bands. We study flux and spectral variability of these blazars on these lengthy timescales. We also examine the optical Spectral Energy Distributions of these blazars, which are crucial in understanding the emission mechanism of long-term variability in blazars. All three TeV blazars exhibited strong flux variability during our observations. The colour variations are mildly chromatic on long timescales for two of them. The nature of the long-term variability of 3C 66A and S5 0954+658 is consistent with a model of a non-thermal variable component that has a continuous injection of relativistic electrons with power law distributions around 4.3 and 4.6, respectively. However, the long-term flux and colour variability of BL Lac suggests that these can arise from modest changes in velocities or viewing angle toward the emission region, leading to variations in the Doppler boosting of the radiation by a factor ~1.2 over the period of these observations.
We have investigated the time variations in the light curves from a sample of long and short Fermi/GBM Gamma ray bursts (GRBs) using an impartial wavelet analysis. The results indicate that in the source frame, the variability time scales for long bu rsts differ from that for short bursts, that variabilities on the order of a few milliseconds are not uncommon, and that an intriguing relationship exists between the minimum variability time and the burst duration.
We consider the magnetic interaction of exoplanets orbiting M-dwarfs, calculating the expected Poynting flux carried upstream along Alfv{e}n wings to the central star. A region of emission analogous to the Io footprint observed in Jupiters aurora is produced, and we calculate the radio flux density generated near the surface of the star via the electron-cyclotron maser instability. We apply the model to produce individual case studies for the TRAPPIST-1, Proxima Centauri, and the dwarf NGTS-1 systems. We predict steady-state flux densities of up to ~ 10 $mu$Jy and sporadic bursts of emission of up to ~ 1 mJy from each case study, suggesting these systems may be detectable with the Very Large Array (VLA) and the Giant Metrewave Radio Telescope (GMRT), and in future with the Square Kilometre Array (SKA). Finally, we present a survey of 85 exoplanets orbiting M-dwarfs, identifying 11 such objects capable of generating radio emission above 10 $mu$Jy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا