ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero Energy Scattering for One-Dimensional Schrodinger Operators and Applications to Dispersive Estimates

108   0   0.0 ( 0 )
 نشر من قبل Gerald Teschl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that for a one-dimensional Schrodinger operator with a potential whose (j+1)th moment is integrable the jth derivative of the scattering matrix is in the Wiener algebra of functions with integrable Fourier transforms. We use this result to improve the known dispersive estimates with integrable time decay for the one-dimensional Schrodinger equation in the resonant case.

قيم البحث

اقرأ أيضاً

Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supporte d on $Sigma$ are studied. For large enough $minmathbb{N}$ the difference of $m$th powers of resolvents of such a Schrodinger operator and the free Laplacian is known to belong to the trace class. We prove trace formulae, in which the trace of the resolvent power difference in $L^2(mathbb{R}^d)$ is written in terms of Neumann-to-Dirichlet maps on the boundary space $L^2(Sigma)$.
We derive dispersion estimates for solutions of a one-dimensional discrete Dirac equations with a potential. In particular, we improve our previous result, weakening the conditions on the potential. To this end we also provide new results concerning scattering for the corresponding perturbed Dirac operators which are of independent interest. Most notably, we show that the reflection and transmission coefficients belong to the Wiener algebra.
We derive a dispersion estimate for one-dimensional perturbed radial Schrodinger operators where the angular momentum takes the critical value $l=-frac{1}{2}$. We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspac e of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.
65 - Jeffrey Galkowski 2020
In this article we consider asymptotics for the spectral function of Schrodinger operators on the real line. Let $P:L^2(mathbb{R})to L^2(mathbb{R})$ have the form $$ P:=-tfrac{d^2}{dx^2}+W, $$ where $W$ is a self-adjoint first order differential oper ator with certain modified almost periodic structure. We show that the kernel of the spectral projector, $mathbb{1}_{(-infty,lambda^2]}(P)$ has a full asymptotic expansion in powers of $lambda$. In particular, our class of potentials $W$ is stable under perturbation by formally self-adjoint first order differential operators with smooth, compactly supported coefficients. Moreover, it includes certain potentials with dense pure point spectrum. The proof combines the gauge transform methods of Parnovski-Shterenberg and Sobolev with Melroses scattering calculus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا