ﻻ يوجد ملخص باللغة العربية
Gaussian distribution of a quantum state with continuous spectrum is known to maximize the Shannon entropy at a fixed variance. Applying it to a pair of canonically conjugate quantum observables $hat x$ and $hat p$, quantum entropic uncertainty relation can take a suggestive form, where the standard deviations $sigma_x$ and $sigma_p$ are featured explicitly. From the construction, it follows in a transparent manner that: (i) the entropic uncertainty relation implies the Kennard-Robertson uncertainty relation in a modifed form, $sigma_xsigma_pgeqhbar e^{cal N}/2$; (ii) the additional factor ${cal N}$ quantifies the quantum non-Gaussianity of the probability distributions of two observables; (iii) the lower bound of the entropic uncertainty relation for non-gaussian continuous variable (CV) mixed state becomes stronger with purity. Optimality of specific non-gaussian CV states to the refined uncertainty relation has been investigated and the existance of new class of CV quantum state is identified.
Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to o
The uncertainty principle determines the distinction between the classical and quantum worlds. This principle states that it is not possible to measure two incompatible observables with the desired accuracy simultaneously. In quantum information theo
Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we have in
Entropic uncertainty is a well-known concept to formulate uncertainty relations for continuous variable quantum systems with finitely many degrees of freedom. Typically, the bounds of such relations scale with the number of oscillator modes, preventi
We derive new inequalities for the probabilities of projective measurements in mutually unbiased bases of a qudit system. These inequalities lead to wider ranges of validity and tighter bounds on entropic uncertainty inequalities previously derived in the literature.