ﻻ يوجد ملخص باللغة العربية
The 13 Myr old star HD106906 is orbited by a debris disk of at least 0.067 M_Moon with an inner and outer radius of 20 AU and 120 AU, respectively, and by a planet at a distance of 650 AU. We use this curious combination of a close low-mass disk and a wide planet to motivate our simulations of this system. We study the parameter space of the initial conditions to quantify the mass loss from the debris disk and its lifetime under the influence of the planet. We find that when the planet orbits closer to the star than about 50 AU and with low inclination relative to the disk (less than about 10 degrees), more disk material is perturbed outside than inside the region constrained by observations on timescales shorter than 1 Myr. Considering the age of the system, such a short lifetime of the disk is incompatible with the timescale for planet--planet scattering which is one of the scenarios suggested to explain the wide separation of the planet. For some configurations when the planets orbit is inclined with respect to the disk, the latter will start to wobble. We argue that this wobbling is caused by a mechanism similar to the Kozai--Lidov oscillations. We also observe various resonant structures (such as rings and spiral arms) induced in the disk by the planet.
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7.
We present the discovery of a co-moving planetary-mass companion ~42 (~2000 AU) from a young M3 star, GU Psc, likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (> 3.5)
We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040-8140293, a low-gravity L3 dwarf previously ide
Young circumstellar disks are of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspec
We present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3$pm$0.3 au (0.618$pm$0.004) from the star. With the high astromet