ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature-Dependence of Magnetically-Active Charge Excitations in Magnetite across the Verwey Transition

339   0   0.0 ( 0 )
 نشر من قبل Munetaka Taguchi Prof.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the electronic structure of bulk single crystals and epitaxial films of magnetite Fe$_3$O$_4$. Fe $2p$ core-level spectra show clear differences between hard x-ray (HAX-) and soft x-ray (SX-) photoemission spectroscopy (PES), indicative of surface effects. The bulk-sensitive spectra exhibit temperature ($T$)-dependent charge excitations across the Verwey transition at $T_V$=122 K, which is missing in the surface-sensitive spectra. An extended impurity Anderson model full-multiplet analysis reveals roles of the three distinct Fe-species (A-Fe$^{3+}$, B-Fe$^{2+}$, B-Fe$^{3+}$) below $T_V$ for the Fe $2p$ spectra, and its $T-$dependent evolution. The Fe $2p$ HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the magnetically distinct sites associated with the charge excitations. Valence band HAXPES shows finite density of states at $E_F$ for the polaronic metal with remnant order above $T_V$, and a clear gap formation below $T_V$. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-Fe$^{2+}$ and B-Fe$^{3+}$ electronic states, consistent with resistivity and bulk-sensitive optical spectra.

قيم البحث

اقرأ أيضاً

95 - P. Piekarz , K. Parlinski , 2006
By combining {it ab initio} results for the electronic structure and phonon spectrum with the group theory, we establish the origin of the Verwey transition in Fe$_3$O$_4$. Two primary order parameters with $X_3$ and $Delta_5$ symmetries are identifi ed. They induce the phase transformation from the high-temperature cubic to the low-temperature monoclinic structure. The on-site Coulomb interaction $U$ between 3d electrons at Fe ions plays a crucial role in this transition -- it amplifies the coupling of phonons to conduction electrons and thus opens a gap at the Fermi energy. {it Published in Phys. Rev. Lett. {bf 97}, 156402 (2006).}
We incorporate single crystal Fe$_3$O$_4$ thin films into a gated device structure and demonstrate the ability to control the Verwey transition with static electric fields. The Verwey transition temperature ($T_V$) increases for both polarities of th e electric field, indicating the effect is not driven by changes in carrier concentration. Energetics of induced electric polarization and/or strain within the Fe$_3$O$_4$ film provide a possible explanation for this behavior. Electric field control of the Verwey transition leads directly to a large magnetoelectric effect with coefficient of 585 pT m/V.
266 - H. Kobayashi , T. Nagao , M. Itou 2009
Two-dimensional spin-uncompensated momentum density distributions, $rho_{rm s}^{2D}({bf p})$s, were reconstructed in magnetite at 12K and 300K from several measured directional magnetic Compton profiles. Mechanical de-twinning was used to overcome se vere twinning in the single crystal sample below the Verwey transition. The reconstructed $rho_{rm s}^{2D}({bf p})$ in the first Brillouin zone changes from being negative at 300 K to positive at 12 K. This result provides the first clear evidence that electrons with low momenta in the minority spin bands in magnetite are localized below the Verwey transition temperature.
We investigated the electronic and vibrational properties of magnetite at temperatures from 300 K down to 10 K and for pressures up to 10 GPa by far-infrared reflectivity measurements. The Verwey transition is manifested by a drastic decrease of the overall reflectance and the splitting of the phonon modes as well as the activation of additional phonon modes. In the whole studied pressure range the down-shift of the overall reflectance spectrum saturates and the maximum number of phonon modes is reached at a critical temperature, which sets a lower bound for the Verwey transition temperature T$_{mathrm{v}}$. Based on these optical results a pressure-temperature phase diagram for magnetite is proposed.
The temperature dependence of the Mott metal-insulator transition (MIT) is studied with a VO_2-based two-terminal device. When a constant voltage is applied to the device, an abrupt current jump is observed with temperature. With increasing applied v oltages, the transition temperature of the MIT current jump decreases. We find a monoclinic and electronically correlated metal (MCM) phase between the abrupt current jump and the structural phase transition (SPT). After the transition from insulator to metal, a linear increase in current (or conductivity) is shown with temperature until the current becomes a constant maximum value above T_{SPT}=68^oC. The SPT is confirmed by micro-Raman spectroscopy measurements. Optical microscopy analysis reveals the absence of the local current path in micro scale in the VO_2 device. The current uniformly flows throughout the surface of the VO_2 film when the MIT occurs. This device can be used as a programmable critical temperature sensor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا