ﻻ يوجد ملخص باللغة العربية
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, and neutron scattering to demonstrate that NaFe$_{1-x}$Cu$_x$As near $xapprox 0.5$ exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behavior persisting above the Neel temperature, indicative of a Mott insulator. Upon decreasing $x$ from $0.5$, the antiferromagnetic ordered moment continuously decreases, yielding to superconductivity around $x=0.05$. Our discovery of a Mott insulating state in NaFe$_{1-x}$Cu$_x$As thus makes it the only known Fe-based material in which superconductivity can be smoothly connected to the Mott insulating state, highlighting the important role of electron correlations in the high-$T_{rm c}$ superconductivity.
Insight into the electronic structure of the pnictide family of superconductors is obtained from quantum oscillation measurements. Here we review experimental quantum oscillation data that reveal a transformation from large quasi-two dimensional elec
Based on a two-band model, we study the electronic Raman scattering intensity in both normal and superconducting states of iron-pnictide superconductors. For the normal state, due to the match or mismatch of the symmetries between band hybridization
The experimental transport scattering rate was determined for a wide range of optimally doped transition metal-substituted FeAs-based compounds with the ThCr2Si2 (122) crystal structure. The maximum transition temperature Tc for several Ba-, Sr-, and
A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arseni
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic (AFM) and in-plane ferromagnetic (FM) wavevectors. However, the possib