ﻻ يوجد ملخص باللغة العربية
The goal of an infection source node (e.g., a rumor or computer virus source) in a network is to spread its infection to as many nodes as possible, while remaining hidden from the network administrator. On the other hand, the network administrator aims to identify the source node based on knowledge of which nodes have been infected. We model the infection spreading and source identification problem as a strategic game, where the infection source and the network administrator are the two players. As the Jordan center estimator is a minimax source estimator that has been shown to be robust in recent works, we assume that the network administrator utilizes a source estimation strategy that can probe any nodes within a given radius of the Jordan center. Given any estimation strategy, we design a best-response infection strategy for the source. Given any infection strategy, we design a best-response estimation strategy for the network administrator. We derive conditions under which a Nash equilibrium of the strategic game exists. Simulations in both synthetic and real-world networks demonstrate that our proposed infection strategy infects more nodes while maintaining the same safety margin between the true source node and the Jordan center source estimator.
We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give th
Signaling pathways and networks determine the ability to communicate in systems ranging from living cells to human society. We investigate how the network structure constrains communication in social-, man-made and biological networks. We find that h
We use $sim$83,000 star-forming galaxies at $0.04<z<0.3$ from the Sloan Digital Sky Survey to study the so-called fundamental metallicity relation (FMR) and report on the disappearance of its anti-correlation between metallicity and star formation ra
Photometry in B, V (down to V ~ 26 mag) is presented for two 23 x 23 fields of the Andromeda galaxy (M31) that were observed with the blue channel camera of the Large Binocular Telescope during the Science Demonstration Time. Each field covers an are
Gluinos that result in classic large missing transverse momentum signatures at the LHC have been excluded by 2011 searches if they are lighter than around 800 GeV. This adds to the tension between experiment and supersymmetric solutions of the natura