ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of statistics on the measured moments of conserved quantities in relativistic heavy ion collisions

150   0   0.0 ( 0 )
 نشر من قبل Lizhu Chen
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study statistics dependence of the probability distributions and the means of measured moments of conserved quantities, respectively. The required statistics of all interested moments and their products are estimated based on a simple simulation. We also explain why the measured moments are underestimated when the statistics are insufficient.With the statistics at RHIC/BES, the second and third order moments can be reliably obtained based on the method of Centrality bin width correction (CBWC), which can not be applied for the fourth order moments at low energy. With planning statistics at RHIC/BES II, and improved CBWC method, $kappasigma^2$ in a finer centrality bin scale should be measurable. This will help us to understand the current observation of energy and centrality dependence of high-order moments.



قيم البحث

اقرأ أيضاً

By the generator of the UrQMD model, event statistics for the products of kurtosis ($kappa$) and variance ($sigma^2$) of net-proton and net-charge multiplicity distributions are carefully studied. It is shown that the statistics at RHIC/BES below $sq rt {s_{NN}} < 19.6$ GeV are not sufficient for using the method of Centrality Bin Width Correction (CBWC). Corresponding results are systematically underestimated. A way to improve the CBWC method is proposed. It can remove the statistics dependence of the data and reduce the initial size fluctuation as well.
A systematic analysis of correlations between different orders of $p_T$-differential flow is presented, including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-plane correlations), and correlations between flow magnitudes, all of which were previously studied with integrated flows. We find that the mode coupling effects among differential flows largely mirror those among the corresponding integrated flows, except at small transverse momenta where mode coupling contributions are small. For the fourth- and fifth-order flow vectors $V_4$ and $V_5$ we argue that the event plane correlations can be understood as the ratio between the mode coupling contributions to these flows and and the flow magnitudes. We also find that for $V_4$ and $V_5$ the linear response contribution scales linearly with the corresponding cumulant-defined eccentricities but not with the standard eccentricities.
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia l such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.
We study the single electron spectra from $D-$ and $B-$meson semileptonic decays in Au+Au collisions at $sqrt{s_{rm NN}}=$200, 62.4, and 19.2 GeV by employing the parton-hadron-string dynamics (PHSD) transport approach that has been shown to reasonab ly describe the charm dynamics at RHIC and LHC energies on a microscopic level. In this approach the initial heavy quarks are produced by using the PYTHIA which is tuned to reproduce the FONLL calculations. The produced heavy quarks interact with off-shell massive partons in QGP with scattering cross sections which are calculated in the dynamical quasi-particle model (DQPM). At energy densities close to the critical energy density the heavy quarks are hadronized into heavy mesons through either coalescence or fragmentation. After hadronization the heavy mesons interact with the light hadrons by employing the scattering cross sections from an effective Lagrangian. The final heavy mesons then produce single electrons through semileptonic decay. We find that the PHSD approach well describes the nuclear modification factor $R_{rm AA}$ and elliptic flow $v_2$ of single electrons in d+Au and Au+Au collisions at $sqrt{s_{rm NN}}=$ 200 GeV and the elliptic flow in Au+Au reactions at $sqrt{s_{rm NN}}=$ 62.4 GeV from the PHENIX collaboration, however, the large $R_{rm AA}$ at $sqrt{s_{rm NN}}=$ 62.4 GeV is not described at all. Furthermore, we make predictions for the $R_{rm AA}$ of $D-$mesons and of single electrons at the lower energy of $sqrt{s_{rm NN}}=$ 19.2 GeV. Additionally, the medium modification of the azimuthal angle $phi$ between a heavy quark and a heavy antiquark is studied. We find that the transverse flow enhances the azimuthal angular distributions close to $phi=$ 0 because the heavy flavors strongly interact with nuclear medium in relativistic heavy-ion collisions and almost flow with the bulk matter.
This paper presents the studies on the influence of the target material impurities on physical observables registered in heavy ion collisions collected by fixed target experiments. It mainly concerns the measures of multiplicity fluctuations which ca n be used to searches for critical point of strongly interacting matter, e.g. in the {NA61/SHINE} fixed-target experiment at CERN SPS. The elemental composition of the targets used in the NA61/SHINE experiment was determined applying wavelength dispersive X-ray fluorescence (WDXRF) technique. The influence of measured target impurities on multiplicity distributions and scaled variance was estimated using simulation events. The modification of the standard analysis was proposed to reduce this influence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا