ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalised form factor dark matter in the Sun

307   0   0.0 ( 0 )
 نشر من قبل Aaron C. Vincent
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aaron C. Vincent




اسأل ChatGPT حول البحث

We study the effects of energy transport in the Sun by asymmetric dark matter with momentum and velocity-dependent interactions, with an eye to solving the decade-old Solar Abundance Problem. We study effective theories where the dark matter-nucleon scattering cross-section goes as $v_{rm rel}^{2n}$ and $q^{2n}$ with $n = -1, 0, 1 $ or $2$, where $v_{rm rel}$ is the dark matter-nucleon relative velocity and $q$ is the momentum exchanged in the collision. Such cross-sections can arise generically as leading terms from the most basic nonstandard DM-quark operators. We employ a high-precision solar simulation code to study the impact on solar neutrino rates, the sound speed profile, convective zone depth, surface helium abundance and small frequency separations. We find that the majority of models that improve agreement with the observed sound speed profile and depth of the convection zone also reduce neutrino fluxes beyond the level that can be reasonably accommodated by measurement and theory errors. However, a few specific points in parameter space yield a significant overall improvement. A 3-5 GeV DM particle with $sigma_{SI} propto q^2$ is particularly appealing, yielding more than a $6sigma$ improvement with respect to standard solar models, while being allowed by direct detection and collider limits. We provide full analytical capture expressions for $q$- and $v_{rm rel}$-dependent scattering, as well as complete likelihood tables for all models.



قيم البحث

اقرأ أيضاً

We study the ability of the Hyper-Kamiokande (HyperK) experiment, currently under construction, to constrain a neutrino signal produced via the annihilation of dark matter captured in the Sun. We simulate upward stopping and upward through-going muon events at HyperK, using Super-Kamiokande (SuperK) atmospheric neutrino results for validation, together with fully and partially contained events. Considering the annihilation of dark matter to various standard model final states, we determined the HyperK sensitivity to the dark matter spin-dependent scattering cross-section. We find that HyperK will improve upon current SuperK limits by a factor of 2-3, with a further improvement in sensitivity possible if systematic errors can be decreased relative to SuperK.
Broad disagreement persists between helioseismological observables and predictions of solar models computed with the latest surface abundances. Here we show that most of these problems can be solved by the presence of asymmetric dark matter coupling to nucleons as the square of the momentum $q$ exchanged in the collision. We compute neutrino fluxes, small frequency separations, surface helium abundances, sound speed profiles and convective zone depths for a number of models, showing more than a $6sigma$ preference for $q^2$ models over others, and over the Standard Solar Model. The preferred mass (3,GeV) and reference dark matter-nucleon cross-section ($10^{-37}$,cm$^2$ at $q_0 = 40$,MeV) are within the region of parameter space allowed by both direct detection and collider searches.
White dwarfs, the most abundant stellar remnants, provide a promising means of probing dark matter interactions, complimentary to terrestrial searches. The scattering of dark matter from stellar constituents leads to gravitational capture, with impor tant observational consequences. In particular, white dwarf heating occurs due to the energy transfer in the dark matter capture and thermalisation processes, and the subsequent annihilation of captured dark matter. We consider the capture of dark matter by scattering on either the ion or the degenerate electron component of white dwarfs. For ions, we account for the stellar structure, the star opacity, realistic nuclear form factors that go beyond the simple Helm approach, and finite temperature effects pertinent to sub-GeV dark matter. Electrons are treated as relativistic, degenerate targets, with Pauli blocking, finite temperature and multiple scattering effects all taken into account. We also estimate the dark matter evaporation rate. The dark matter-nucleon/electron scattering cross sections can be constrained by comparing the heating rate due to dark matter capture with observations of cold white dwarfs in dark matter-rich environments. We apply this technique to observations of old white dwarfs in the globular cluster Messier 4, which we assume to be located in a DM subhalo. For dark matter-nucleon scattering, we find that white dwarfs can probe the sub-GeV mass range inaccessible to direct detection searches, with the low mass reach limited only by evaporation, and can be competitive with direct detection in the $1-10^4$ GeV range. White dwarf limits on dark matter-electron scattering are found to outperform current electron recoil experiments over the full mass range considered, and extend well beyond the $sim 10$ GeV mass regime where the sensitivity of electron recoil experiments is reduced.
Dark matter with momentum- or velocity-dependent interactions with nuclei has shown significant promise for explaining the so-called Solar Abundance Problem, a longstanding discrepancy between solar spectroscopy and helioseismology. The best-fit mode ls are all rather light, typically with masses in the range of 3-5 GeV. This is exactly the mass range where dark matter evaporation from the Sun can be important, but to date no detailed calculation of the evaporation of such models has been performed. Here we carry out this calculation, for the first time including arbitrary velocity- and momentum-dependent interactions, thermal effects, and a completely general treatment valid from the optically thin limit all the way through to the optically thick regime. We find that depending on the dark matter mass, interaction strength and type, the mass below which evaporation is relevant can vary from 1 to 4 GeV. This has the effect of weakening some of the better-fitting solutions to the Solar Abundance Problem, but also improving a number of others. As a by-product, we also provide an improved derivation of the capture rate that takes into account thermal and optical depth effects, allowing the standard result to be smoothly matched to the well-known saturation limit.
We discuss a limitation on extracting bounds on the scattering cross section of dark matter with nucleons, using neutrinos from the Sun. If the dark matter particle is sufficiently light (less than about 4 GeV), the effect of evaporation is not negli gible and the capture process goes in equilibrium with the evaporation. In this regime, the flux of solar neutrinos of dark matter origin becomes independent of the scattering cross section and therefore no constraint can be placed on it. We find the minimum values of dark matter masses for which the scattering cross section on nucleons can be probed using neutrinos from the Sun. We also provide simple and accurate fitting functions for all the relevant processes of GeV-scale dark matter in the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا