ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Vortex Pinning and Penetration Depth in Superconducting NdFeAsO$_{1-x}$F$_x$

172   0   0.0 ( 0 )
 نشر من قبل J. E. Hoffman
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO$_{1-x}$F$_x$, one of the highest-$T_c$ iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, $F_{mathrm{depin}} simeq 4.5$ pN, corresponding to a critical current up to $J_c simeq 7 times 10^5$ A/cm$^2$. Furthermore, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO$_{1-x}$F$_x$, $lambda_{ab}=320 pm 60$ nm, which is larger than previous bulk measurements.



قيم البحث

اقرأ أيضاً

266 - Peng Cheng , Huan Yang , Ying Jia 2008
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature depe ndence were found below about 150 K. The magnetoresistance was found to be as large as 30% at 15 K at a magnetic field of 9 T. From the transport data we found that the transition near 155 K was accomplished in two steps: first one occurs at 155 K which may be associated with the structural transition, the second one takes place at about 140 K which may correspond to the spin-density wave like transition. In the superconducting sample with $T_c$ = 50 $ $K, it is found that the Hall coefficient also reveals a strong temperature dependence with a negative sign. But the magnetoresistance becomes very weak and does not satisfy the Kohlers scaling law. These dilemmatic results (strong Hall effect and very weak magnetoresistance) prevent to understand the normal state electric conduction by a simple multi-band model by taking account the electron and hole pockets. Detailed analysis further indicates that the strong temperature dependence of $R_H$ cannot be easily understood with the simple multi-band model either. A picture concerning a suppression to the density of states at the Fermi energy in lowering temperature is more reasonable. A comparison between the Hall coefficient of the undoped sample and the superconducting sample suggests that the doping may remove the nesting condition for the formation of the SDW order, since both samples have very similar temperature dependence above 175 K.
We present a comprehensive study of vortex matter and pinning evolution in the FeSe$_{1-x}$S$_x$ system with various doping degree. The influence of sulphur substitution on vortex pinning and peak effect occurrence is studied. We show that there is a complex interplay among various pinning contributions in the FeSe$_{1-x}$S$_x$ system. Additionally, we study a possible vortex liquid-vortex glass/lattice transition and find an evidence that the vortex liquid-vortex glass phase transition in FeSe has a quasi two-dimensional nature. We investigate the upper critical field behaviour in FeSe$_{1-x}$S$_x$ system, and found that the upper critical field is higher than that predicted by the Werthamer-Helfand-Hohenberg (WHH) model, whereas its temperature dependence could be fitted within a two-band framework. Finally, a detailed H-T phase diagram is presented.
Using a radio frequency tunnel diode oscillator technique, we measured the temperature dependence of the in-plane London penetration depth $Deltalambda_{ab}(T)$ in Fe$_{1+y}$(Te$_{1-x}$Se$_{x})$ single crystals, down to temperatures as low as 50 mK. A significant number of samples, with nominal Se concentration $x$=0.36, 0.40, 0.43 and 0.45 respectively, were studied and in many cases we found that $Deltalambda_{ab}(T)$ shows an upturn below 0.7 K, indicative of a paramagnetic type contribution. After subtracting the magnetic background, the low temperature behavior of penetration depth is best described by a power law with exponent $napprox2$ and with no systematic dependence on the Se concentration. Most importantly, in the limit of T$rightarrow$0, in some samples we observed a narrow region of linear temperature dependence of penetration depth, suggestive of nodes in the superconducting gap of Fe$_{1+y}$(Te$_{1-x}$Se$_{x})$.
We report plane-polarized Raman scattering spectra of iron oxypnictide superconductor NdFeAsO$_{1-x}$F$_x$ single crystals with varying fluorine $x$ content. The spectra exhibit sharp and symmetrical phonon lines with a weak dependence on fluorine do ping $x$. The temperature dependence does not show any phonon anomaly at the superconducting transition. The Fe related phonon intensity shows a strong resonant enhancement below 2 eV. We associate the resonant enhancement to the presence of an interband transition around 2 eV observed in optical conductivity. Our results point to a rather weak coupling between Raman-active phonons and electronic excitations in iron oxypnictides superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا