ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of an Ion Coupled to a Parametric Superconducting Circuit

51   0   0.0 ( 0 )
 نشر من قبل Dvir Kafri
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting circuits and trapped ions are promising architectures for quantum information processing. However, the natural frequencies for controlling these systems -- radio frequency ion control and microwave domain superconducting qubit control -- make direct Hamiltonian interactions between them weak. In this paper we describe a technique for coupling a trapped ions motion to the fundamental mode of a superconducting circuit, by applying to the circuit a carefully modulated external magnetic flux. In conjunction with a non-linear element (Josephson junction), this gives the circuit an effective time-dependent inductance. We then show how to tune the external flux to generate a resonant coupling between the circuit and ions motional mode, and discuss the limitations of this approach compared to using a time-dependent capacitance.

قيم البحث

اقرأ أيضاً

158 - Y. Kubo , C. Grezes , A. Dewes 2011
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back later on into the qubit. These results constitute a first proof of concept of spin-ensemble based quantum memory for superconducting qubits.
90 - Kong Han , Yimin Wang , 2021
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs), to enhance the microwave squeezing via parametric down-conversion (PDC). In our scheme, the two CWRs are nonlinearly coup led through a superconducting quantum interference device embedded in one of the CWRs. This is equivalent to replacing the transmission line in a flux-driven Josephson parametric amplifier (JPA) by a CWR, which makes it possible to drive the JPA by a quantized microwave field. Owing to this design, the PDC coefficient can be considerably increased to be about tens of megahertz, satisfying the strong-coupling condition. Using the Heisenberg-Langevin approach, we numerically show the enhancement of the microwave squeezing in our scheme. In contrast to the JPA, our proposed system becomes stable around the critical point and can generate stronger transient squeezing. In addition, the strong-coupling PDC can be used to engineer the photon blockade.
53 - X.Y. Han , T.Q. Cai , X.G. Li 2020
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler for achieving a continuous tunability to eliminate unwanted qubit interactions. We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits. The controllable interaction can provide an extra degree of freedom to verify the optimal condition for constructing the parametric gate. Aiming to fully investigate error sources of the two-qubit gates, we perform quantum process tomography measurements and numerical simulations as varying static ZZ coupling strength. We quantitatively calculate the dynamic ZZ coupling parasitizing in two-qubit gate operation, and extract the particular gate error from the decoherence, dynamic ZZ coupling and high-order oscillation terms. Our results reveal that the main gate error comes from the decoherence, while the increase in the dynamic ZZ coupling and high-order oscillation error degrades the parametric gate performance. This approach, which has not yet been previously explored, provides a guiding principle to improve gate fidelity of parametric iSWAP gate by suppression of the unwanted qubit interactions. This controllable interaction, together with the parametric modulation technique, is desirable for crosstalk free multiqubit quantum circuits and quantum simulation applications.
We propose an experimentally realizable hybrid quantum circuit for achieving a strong coupling between a spin ensemble and a transmission-line resonator via a superconducting flux qubit used as a data bus. The resulting coupling can be used to transf er quantum information between the spin ensemble and the resonator. In particular, in contrast to the direct coupling without a data bus, our approach requires far less spins to achieve a strong coupling between the spin ensemble and the resonator (e.g., three to four orders of magnitude less). This proposed hybrid quantum circuit could enable a long-time quantum memory when storing information in the spin ensemble, and allows the possibility to explore nonlinear effects in the ultrastrong-coupling regime.
We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 $mu$ m along the cavity axis. Each chain can contain up to 20 individually addressable Ybtextsuperscript{+} ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with $lesssim$10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا