ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters

271   0   0.0 ( 0 )
 نشر من قبل Harry Wilcox
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas filling the potential wells of galaxy clusters. However, it would not influence the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, $z=0.02$). Here we apply the technique to the stacked profiles of 58 clusters at higher redshifts ($0.1<z<1.2$), including 12 new to the literature, using X-ray data from the XMM Cluster Survey (XCS) and weak lensing data from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). Using a multi-parameter MCMC analysis, we constrain the two chameleon gravity parameters ($beta$ and $phi_{infty}$). Our fits are consistent with general relativity, not requiring a fifth force. In the special case of $f(R)$ gravity (where $beta = sqrt{1/6}$), we set an upper limit on the background field amplitude today of $|f_{rm{R0}}| < 6 times 10^{-5}$ (95% CL). This is one of the strongest constraints to date on $|f_{rm{R0}}|$ on cosmological scales. We hope to improve this constraint in future by extending the study to hundreds of clusters using data from the Dark Energy Survey.



قيم البحث

اقرأ أيضاً

We investigate void properties in $f(R)$ models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki $f(R)$ modified gravity (MG) models, the halo number density profiles of v oids are not distinguishable from GR. In contrast, the same $f(R)$ voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the $f(R)$ model parameter amplitudes $|f_{R0}|=10^{-5}$ and $10^{-4}$ may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8$sigma$ for a volume of 1~(Gpc/$h$)$^3$. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish $|f_{R0}|=10^{-6}$ from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in $f(R)$ models are unique features that can be combined to break the degeneracy between $|f_{R0}|$ and $sigma_8$.
We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at $z=0.44$ to estimate the value of the ratio $eta=Psi/Phi$ between the two scalar potentials in the linea r perturbed Friedmann-Lemaitre-Robertson-Walker metric.[...] Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only $Phi$), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum $Phi+Psi$). We thus express $eta$ as a function of the mass profiles and perform our analysis over the radial range $0.5,Mpcle rle r_{200}=1.96,Mpc$. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain $eta(r_{200})=1.01,_{-0.28}^{+0.31}$ at the 68% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied $f(R)$ modified gravity model, the constraint on $eta$ translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the $f(R)$ interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.
We present a direct measurement of the mean halo occupation distribution (HOD) of galaxies taken from the eleventh data release (DR11) of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS). The HOD of BOSS low-redshift (L OWZ: $0.2 < z < 0.4$) and Constant-Mass (CMASS: $0.43 <z <0.7$) galaxies is inferred via their association with the dark-matter halos of 174 X-ray-selected galaxy clusters drawn from the XMM Cluster Survey (XCS). Halo masses are determined for each galaxy cluster based on X-ray temperature measurements, and range between ${rm log_{10}} (M_{180}/M_{odot}) = 13-15$. Our directly measured HODs are consistent with the HOD-model fits inferred via the galaxy-clustering analyses of Parejko et al. for the BOSS LOWZ sample and White et al. for the BOSS CMASS sample. Under the simplifying assumption that the other parameters that describe the HOD hold the values measured by these authors, we have determined a best-fit alpha-index of 0.91$pm$0.08 and $1.27^{+0.03}_{-0.04}$ for the CMASS and LOWZ HOD, respectively. These alpha-index values are consistent with those measured by White et al. and Parejko et al. In summary, our study provides independent support for the HOD models assumed during the development of the BOSS mock-galaxy catalogues that have subsequently been used to derive BOSS cosmological constraints.
We have obtained deep SZ observations towards 15 of the apparently hottest XMM Cluster Survey (XCS) clusters that can be observed with the Arcminute Microkelvin Imager (AMI). We use a Bayesian analysis to quantify the significance of our SZ detection s. We detect the SZ effect at high significance towards three of the clusters and at lower significance for a further two clusters. Towards the remaining ten clusters, no clear SZ signal was measured. We derive cluster parameters using the XCS mass estimates as a prior in our Bayesian analysis. For all AMI-detected clusters, we calculate large-scale mass and temperature estimates while for all undetected clusters we determine upper limits on these parameters. We find that the large- scale mean temperatures derived from our AMI SZ measurements (and the upper limits from null detections) are substantially lower than the XCS-based core-temperature estimates. For clusters detected in the SZ, the mean temperature is, on average, a factor of 1.4 lower than temperatures from the XCS. For clusters undetected in SZ, the average 68% upper limit on the mean temperature is a factor of 1.9 below the XCS temperature.
The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. I n this paper we describe the data processing methodology applied to the 5,776 XMM observations used to construct the current XCS source catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are detected with > 300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of < 40 (< 10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMM images. These tests show that the simple isothermal beta-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically-confirmed clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا