ﻻ يوجد ملخص باللغة العربية
We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schroedinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states and their interference pattern reproduces the results of Y.Ji et al.[Nature 422, 415 (2003)]. By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.
We develop a theoretical description of a Mach-Zehnder interferometer built from integer quantum Hall edge states, with an emphasis on how electron-electron interactions produce decoherence. We calculate the visibility of interference fringes and noi
We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from
We report time-of-flight measurements on electrons travelling in quantum-Hall edge states. Hot-electron wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron arrival time is detected by driving
The recent development of dynamic single-electron sources makes it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach-Zehnd
A p-n junction, an interface between two regions of a material populated with carriers of opposite charge, is a basic building block of solid state electronic devices. From the fundamental physics perspective, it often serves as a tool to reveal the