ﻻ يوجد ملخص باللغة العربية
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio Quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding (AIDMD). For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard $U^{*}/t$ to be $1.3 pm 0.2$, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large scale calculations using techniques designed for lattice models.
Due to advances in computer hardware and new algorithms, it is now possible to perform highly accurate many-body simulations of realistic materials with all their intrinsic complications. The success of these simulations leaves us with a conundrum: h
RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials and is able to calculate maximally localized Wannier functions, response functions based on the random phase approximation and related optical p
We propose an electron-phonon parameterization which reliably reproduces the geometry and harmonic frequencies of a real system. With respect to standard electron-phonon models, it adds a double-counting correction, which takes into account the latti
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for lin
A computationally efficient workflow for obtaining low-energy tight-binding Hamiltonians for twisted bilayer graphene, obeying both crystal and time-reversal symmetries, is presented in this work. The Hamiltonians at the first magic angle are generat