ﻻ يوجد ملخص باللغة العربية
Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally bright elliptical galaxies within a core of radius 10kpc. Such corrugation of the stellar distribution is very rare, and suggests recent formation by several simultaneous mergers. We map the distribution of associated dark matter, using new Hubble Space Telescope imaging and VLT/MUSE integral field spectroscopy of a gravitationally lensed system threaded through the cluster core. We find that each of the central galaxies retains a dark matter halo, but that (at least) one of these is spatially offset from its stars. The best-constrained offset is 1.62+/-0.48kpc, where the 68% confidence limit includes both statistical error and systematic biases in mass modelling. Such offsets are not seen in field galaxies, but are predicted during the long infall to a cluster, if dark matter self-interactions generate an extra drag force. With such a small physical separation, it is difficult to definitively rule out astrophysical effects operating exclusively in dense cluster core environments - but if interpreted solely as evidence for self-interacting dark matter, this offset implies a cross-section sigma/m=(1.7+/-0.7)x10^{-4}cm^2/g x (t/10^9yrs)^{-2}, where t is the infall duration.
We present integral field spectroscopy of galaxy cluster Abell 3827, using ALMA and VLT/MUSE. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral gal
We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $z_s=2.39$ and the mass enclosed within the 14 arc sec
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introdu
We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despi
We present new, deep (245 ks) Chandra observations of the galaxy cluster Abell 1664 ($z = 0.1283$). These images reveal rich structure, including elongation and accompanying compressions of the X-ray isophotes in the NE-SW direction, suggesting that