ﻻ يوجد ملخص باللغة العربية
Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of interacting dyons for the SU(2) pure gauge theory. Unlike previous studies, we focus on back reaction on the holonomy and the issue of confinement. We calculate the free energy as a function of the holonomy and the dyon densities, using standard Metropolis Monte Carlo and integration over parameter methods. We observe that as the temperature decreases and the dyon density grows, its minimum indeed moves from small holonomy to the value corresponding to confinement. We then report various parameters of the self-consistent ensembles as a function of temperature, and investigate the role of inter-particle correlations.
Confinement remains one the most interesting and challenging nonperturbative phenomenon in non-Abelian gauge theories. Recent semiclassical (for SU(2)) and lattice (for QCD) studies have suggested that confinement arises from interactions of statisti
Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and nonzero expectation value of $A_4$. While the interaction between instanton-dyons has been calculated to
We investigate SU(2) lattice gauge theory in four dimensions in the maximally abelian projection. Studying the effects on different lattice sizes we show that the deconfinement transition of the fields and the percolation transition of the monopole c
Motivated by recent studies on the resurgence structure of quantum field theories, we numerically study the nonperturbative phenomena of the SU($3$) gauge theory in a weak coupling regime. We find that topological objects with a fractional charge eme
It is known since 1980s that the instanton-induced t Hooft effective Lagrangian not only can solve the so called $U(1)a$ problem, by making the $eta$ meson heavy etc, but it can also lead to chiral symmetry breaking. In 1990s it was demonstrated that