ﻻ يوجد ملخص باللغة العربية
Tetragonal Mn$_x$Ga$_{1-x}$ (x=0.70, 0.75) thin films grown on SrTiO$_3$ substrates at different temperatures and thicknesses exhibit perpendicular magnetic anisotropy with coercive fields between 1-2 T. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that 40nm samples grown at 300-350$^{o}$C lead to polycrystalline films with the tetragonal c-axis oriented primarily perpendicular to the film plane but with some fraction of the sample exhibiting the c-axis in the film plane. This structure results in a secondary magnetic component in the out of plane magnetization. Growth at 300$^{o}$C with a reduced thickness or Mn concentration significantly decreases the presence of the tetragonal c-axis in the film plane, thus improving the magnetic properties. TEM is of critical importance in characterizing these materials, since conventional XRD cannot always identify the presence of additional crystallographic orientations although they can still affect the magnetic properties. Our study points to ways that the microstructure of these thin films can be controlled, which is critical for utilization of this material in spintronic devices.
We show, by SQUID magnetometry, that in (Ga,Mn)As films the in-plane uniaxial magnetic easy axis is consistently associated with particular crystallographic directions and that it can be rotated from the [-110] direction to the [110] direction by low
We have measured the magnetoresistance in a series of Ga$_{1-x}$Mn$_x$As samples with 0.033$le x le$ 0.053 for three mutually orthogonal orientations of the applied magnetic field. The spontaneous resistivity anisotropy (SRA) in these materials is ne
In this work we report the appearence of a large perpendicular magnetic anisotropy (PMA) in Fe$_{1-x}$Ga$_x$ thin films grown onto ZnSe/GaAs(100). This arising anisotropy is related to the tetragonal metastable phase in as-grown samples recently repo
Nanometric inclusions filled with nitrogen, located adjacent to FenN (n = 3 or 4) nanocrystals within (Ga,Fe)N layers, are identified and characterized using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS
We have investigated the electronic structure of the $p$-type diluted magnetic semiconductor In$_{1-x}$Mn$_x$As by photoemission spectroscopy. The Mn 3$d$ partial density of states is found to be basically similar to that of Ga$_{1-x}$Mn$_x$As. How