ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravity-mode period spacings as seismic diagnostic for a sample of gamma Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

82   0   0.0 ( 0 )
 نشر من قبل Timothy Van Reeth
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma Doradus stars (hereafter gamma Dor stars) are gravity-mode pulsators of spectral type A or F. Such modes probe the deep stellar interior, offering a detailed fingerprint of their structure. Four-year high-precision space-based Kepler photometry of gamma Dor stars has become available, allowing us to study these stars with unprecedented detail. We selected, analysed, and characterized a sample of 67 gamma Dor stars for which we have Kepler observations available. For all the targets in the sample we assembled high-resolution spectroscopy to confirm their F-type nature. We found fourteen binaries, among which four single-lined binaries, five double-lined binaries, two triple systems and three binaries with no detected radial velocity variations. We estimated the orbital parameters whenever possible. For the single stars and the single-lined binaries, fundamental parameter values were determined from spectroscopy. We searched for period spacing patterns in the photometric data and identified this diagnostic for 50 of the stars in the sample, 46 of which are single stars or single-lined binaries. We found a strong correlation between the spectroscopic vsini and the period spacing values, confirming the influence of rotation on gamma Dor-type pulsations as predicted by theory. We also found relations between the dominant g-mode frequency, the longest pulsation period detected in series of prograde modes, vsini, and log Teff.

قيم البحث

اقرأ أيضاً

The space-missions MOST, CoRoT, and Kepler deliver a huge amount of high-quality photometric data suitable to study numerous pulsating stars. Our ultimate goal is a detection and analysis of an extended sample of Gamma Dor-type pulsating stars with the aim to search for observational evidence of non-uniform period spacings and rotational splittings of gravity modes in main-sequence stars typically twice as massive as the Sun. We applied an automated supervised photometric classification method to select a sample of 69 Gamma Doradus candidate stars. We used an advanced method to extract the Kepler light curves from the pixel data information using custom masks. For 36 of the stars, we obtained high-resolution spectroscopy with the HERMES spectrograph installed at the Mercator telescope. We find that all stars for which spectroscopic estimates of Teff and logg are available fall into the region of the HR diagram where the Gamma Dor and Delta Sct instability strips overlap. The stars cluster in a 700 K window in effective temperature, logg measurements suggest luminosity class IV-V. From the Kepler photometry, we identify 45 Gamma Dor-type pulsators, 14 Gamma Dor/Delta Sct hybrids, and 10 stars which are classified as possibly Gamma Dor/Delta Sct hybrid pulsators. The results of photometric and spectroscopic classifications according to the type of variability are in perfect agreement. We find a clear correlation between the spectroscopically derived vsini and the frequencies of independent pulsation modes and show that it has nothing to do with rotational modulation of the stars but is related to their stellar pulsations. Our sample and frequency determinations offer a good starting point for seismic modelling of slow to moderately rotating Gamma Dor stars.
CONTEXT. Gamma Doradus stars (hereafter gamma Dor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an ob servational signature of the stars evolution and current internal structure and is heavily influenced by rotation. AIMS. We aim to constrain the near-core rotation rates for a sample of gamma Dor stars, for which we have detected period spacing patterns. METHODS. We combined the asymptotic period spacing with the traditional approximation of stellar pulsation to fit the observed period spacing patterns using chi-squared optimisation. The method was applied to the observed period spacing patterns of a sample of stars and used for ensemble modelling. RESULTS. For the majority of stars with an observed period spacing pattern we successfully determined the rotation rates and the asymptotic period spacing values, though the uncertainty margins on the latter were typically large. This also resulted directly in the identification of the modes corresponding with the detected pulsation frequencies, which for most stars were prograde dipole gravity and gravito-inertial modes. The majority of the observed retrograde modes were found to be Rossby modes. We further discuss the limitations of the method due to the neglect of the centrifugal force and the incomplete treatment of the Coriolis force. CONCLUSION. Despite its current limitations, the proposed methodology was successful to derive the rotation rates and to identify the modes from the observed period spacing patterns. It forms the first step towards detailed seismic modelling based on observed period spacing patterns of moderately to rapidly rotating gamma Dor stars.
72 - L. Fox-Machado 2013
We have obtained CCD photometry and medium-resolution spectroscopy of a number of $delta$ Scuti and $gamma$ Doradus stars in the Kepler field-of-view as part of the ground-based observational efforts to support the textit{Kepler} space mission. In th is work we present the preliminary results of these observations.
We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f_2 has an amp litude of a few mmag, 20 - 45 times lower than the main radial mode with frequency f_1. The two oscillations have a period ratio of P_2/P_1 = 0.612 - 0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is nonradial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P_2/P_1 ~ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f_2 at ~1/2 f_2 and at ~3/2 f_2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f_2 and its subharmonics are variable on a timescale of 10 - 200d. The dominant radial mode also shows variations on the same timescale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1mmag, that must correspond to nonradial g-modes. Such modes never before have been observed in RR Lyrae variables.
117 - Shyeh Tjing Loi 2020
When a star evolves into a red giant, the enhanced coupling between core-based gravity modes and envelope-based pressure modes forms mixed modes, allowing its deep interior to be probed by asteroseismology. The ability to obtain information about ste llar interiors is important for constraining theories of stellar structure and evolution, for which the origin of various discrepancies between prediction and observation are still under debate. Ongoing speculation surrounds the possibility that some red giant stars may harbour strong (dynamically significant) magnetic fields in their cores, but interpretation of the observational data remains controversial. In part, this is tied to shortfalls in our understanding of the effects of strong fields on the seismic properties of gravity modes, which lies beyond the regime of standard perturbative methods. Here we seek to investigate the effect of a strong magnetic field on the asymptotic period spacings of gravity modes. We use a Hamiltonian ray approach to measure the volume of phase space occupied by mode-forming rays, this being roughly proportional to the average density of modes (number of modes per unit frequency interval). A strong field appears to systematically increase this by about 10%, which predicts a ~10% smaller period spacing. Evidence of near integrability in the ray dynamics hints that the gravity-mode spectrum may still exhibit pseudo-regularities under a strong field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا