ﻻ يوجد ملخص باللغة العربية
In this article we describe the crystallization conjecture. It states that, in appropriate physical conditions, interacting particles always place themselves into periodic configurations, breaking thereby the natural translation-invariance of the system. This famous problem is still largely open. Mathematically, it amounts to studying the minima of a real-valued function defined on $mathbb{R}^{3N}$ where $N$ is the number of particles, which tends to infinity. We review the existing literature and mention several related open problems, of which many have not been thoroughly studied.
The Coulomb phase, with its dipolar correlations and pinch-point-scattering patterns, is central to discussions of geometrically frustrated systems, from water ice to binary and mixed-valence alloys, as well as numerous examples of frustrated magnets
Freezing is a fundamental physical phenomenon that has been studied over many decades; yet the role played by surfaces in determining nucleation has remained elusive. Here we report direct computational evidence of surface induced nucleation in super
Recently, Hao Huang proved the Sensitivity Conjecture, an important result about complexity measures of Boolean functions. We will discuss how this simple and elegant proof turns out to be closely related to physics concepts of the Jordan-Wigner tran
We review some of the recent progress on the study of entropy of entanglement in many-body quantum systems. Emphasis is placed on the scaling properties of entropy for one-dimensional multi-partite models at quantum phase transitions and, more genera
Recently, a variational approach has been introduced for the paradigmatic Kardar--Parisi--Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expan