ترغب بنشر مسار تعليمي؟ اضغط هنا

Global existence of radial solutions for general semilinear hyperbolic systems in 3D

91   0   0.0 ( 0 )
 نشر من قبل Silu Yin
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the well-posedness of radial solutions for general nonlinear hyperbolic systems in three dimensions. We give a proof of the global existence of radial solutions for general semilinear hyperbolic systems in 3D under null condition, with small scaling invariant $dot{W}^{2,1}(mathbb{R}^3)$ data. We obtain a bilinear estimate that is effective to the hyperbolic systems which do not have any time decay. It allows us to achieve the boundedness of the weighted BV norm of the radial solution.



قيم البحث

اقرأ أيضاً

The local and global existence of the Cauchy problem for semilinear heat equations with small data is studied in the weighted $L^infty (mathbb R^n)$ framework by a simple contraction argument. The contraction argument is based on a weighted uniform c ontrol of solutions related with the free solutions and the first iterations for the initial data of negative power.
This paper deals with the existence of positive solutions for the nonlinear system q(t)phi(p(t)u_{i}(t)))+f^{i}(t,textbf{u})=0,quad 0<t<1,quad i=1,2,...,n. This system often arises in the study of positive radial solutions of nonlinear elliptic syste m. Here $textbf{u}=(u_{1},...,u_{n})$ and $f^{i}, i=1,2,...,n$ are continuous and nonnegative functions, $p(t), q(t)hbox{rm :} [0,1]to (0,oo)$ are continuous functions. Moreover, we characterize the eigenvalue intervals for (q(t)phi(p(t)u_{i}(t)))+lambda h_{i}(t)g^{i} (textbf{u})=0, quad 0<t<1,quad i=1,2,...,n. The proof is based on a well-known fixed point theorem in cones.
101 - Mengyun Liu , Chengbo Wang 2018
We study the global existence of solutions to semilinear wave equations with power-type nonlinearity and general lower order terms on $n$ dimensional nontrapping asymptotically Euclidean manifolds, when $n=3, 4$. In addition, we prove almost global e xistence with sharp lower bound of the lifespan for the four dimensional critical problem.
153 - Jingrui Wang , Keyan Wang 2016
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is ac hieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $tgeq0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlovi{c} and Staffilani on (SIMA, [1])in which $alpha$ is restricted to $0<alpha<frac{1}{4}$.
135 - Yige Bai , Mengyun Liu 2018
We study the global existence of solutions to semilinear damped wave equations in the scattering case with derivative power-type nonlinearity on (1+3) dimensional nontrapping asymptotically Euclidean manifolds. The main idea is to exploit local energ y estimate, together with local existence to convert the parameter $mu$ to small one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا