ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Proton Scattering Efficiency Measurements on X-Ray Mirror Shells

307   0   0.0 ( 0 )
 نشر من قبل Sebastian Diebold
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In-orbit experience has shown that soft protons are funneled more efficiently through focusing Wolter-type optics of X-ray observatories than simulations predicted. These protons can degrade the performance of solid-state X-ray detectors and contribute to the instrumental background. Since laboratory measurements of the scattering process are rare, an experiment for grazing angles has been set up at the accelerator facility of the University of Tubingen. Systematic measurements at incidence angles ranging from 0.3{deg} to 1.2{deg} with proton energies around 250 keV, 500 keV, and 1 MeV have been carried out. Parts of spare mirror shells of the eROSITA (extended ROentgen Survey with an Imaging Telescope Array) instrument have been used as scattering targets. This publication comprises a detailed description of the setup, the calibration and normalization methods, and the scattering efficiency and energy loss results. A comparison of the results with a theoretical scattering description and with simulations is included as well.



قيم البحث

اقرأ أيضاً

115 - Sebastian Diebold 2013
Protons that are trapped in the Earths magnetic field are one of the main threats to astronomical X-ray observatories. Soft protons, in the range from tens of keV up to a few MeV, impinging on silicon X-ray detectors can lead to a significant degrada tion of the detector performance. Especially in low earth orbits an enhancement of the soft proton flux has been found. A setup to irradiate detectors with soft protons has been constructed at the Van-de-Graaff accelerator of the Physikalisches Institut of the University of Tubingen. Key advantages are a high flux uniformity over a large area, to enable irradiations of large detectors, and a monitoring system for the applied fluence, the beam uniformity, and the spectrum, that allows testing of detector prototypes in early development phases, when readout electronics are not yet available. Two irradiation campaigns have been performed so far with this setup. The irradiated detectors are silicon drift detectors, designated for the use on-board the LOFT space mission. This paper gives a description of the experimental setup and the associated monitoring system.
Low energy protons (< 300 keV) can enter the field of view of X-ray space telescopes, scatter at small incident angles, and deposit energy on the detector, causing intense background flares at the focal plane or in the most extreme cases, damaging th e X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance of future X-ray telescopes as the ESA ATHENA mission. For the first time the Remizovich model, in the approximation of no energy losses, is implemented top of the Geant4 release 10.2. Both the new scattering physics and the built-in Coulomb scattering are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funneling, and affirm that Coulomb single scattering can represent, until further measurements, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.
X-ray SOI pixel sensors, XRPIX, are being developed for the next-generation X-ray astronomical satellite, FORCE. The XRPIX are fabricated with the SOI technology, which makes it possible to integrate a high-resistivity Si sensor and a low-resistivity Si CMOS circuit. The CMOS circuit in each pixel is equipped with a trigger function, allowing us to read out outputs only from the pixels with X-ray signals at the timing of X-ray detection. This function thus realizes high throughput and high time resolution, which enables to employ anti-coincidence technique for background rejection. A new series of XRPIX named XRPIX6E developed with a pinned depleted diode (PDD) structure improves spectral performance by suppressing the interference between the sensor and circuit layers. When semiconductor X-ray sensors are used in space, their spectral performance is generally degraded owing to the radiation damage caused by high-energy protons. Therefore, before using an XRPIX in space, it is necessary to evaluate the extent of degradation of its spectral performance by radiation damage. Thus, we performed a proton irradiation experiment for XRPIX6E for the first time at HIMAC in the NIRS. We irradiated XRPIX6E with high-energy protons with a total dose of up to 40 krad, equivalent to 400 years of irradiation in orbit. The 40-krad irradiation degraded the energy resolution of XRPIX6E by 25 $pm$ 3%, yielding an energy resolution of 260.1 $pm$ 5.6 eV at the full width half maximum for 5.9 keV X-rays. However, the value satisfies the requirement for FORCE, 300 eV at 6 keV, even after the irradiation. It was also found that the PDD XRPIX has enhanced radiation hardness compared to previous XRPIX devices. In addition, we investigated the degradation of the energy resolution; it was shown that the degradation would be due to increasing energy-independent components, e.g., readout noise.
A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90 degree angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 micron thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.
We have been developing event-driven SOI Pixel Detectors, named `XRPIX (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has ev ent trigger output function at each pixel to acquire a good time resolution of a few $mu rm s$ and has Correlated Double Sampling function to reduce electric noises. The good time resolution enables the XRPIX to reduce Non X-ray Background in the high energy band above 10,keV drastically by using anti-coincidence technique with active shield counters surrounding XRPIX. In order to increase the soft X-ray sensitivity, it is necessary to make the dead layer on the X-ray incident surface as thin as possible. Since XRPIX1b, which is a device at the initial stage of development, is a front-illuminated (FI) type of XRPIX, low energy X-ray photons are absorbed in the 8 $rm mu$m thick circuit layer, lowering the sensitivity in the soft X-ray band. Therefore, we developed a back-illuminated (BI) device XRPIX2b, and confirmed high detection efficiency down to 2.6 keV, below which the efficiency is affected by the readout noise. In order to further improve the detection efficiency in the soft X-ray band, we developed a back-illuminated device XRPIX3b with lower readout noise. In this work, we irradiated 2--5 keV X-ray beam collimated to 4 $rm mu m phi$ to the sensor layer side of the XRPIX3b at 6 $rm mu m$ pitch. In this paper, we reported the uniformity of the relative detection efficiency, gain and energy resolution in the subpixel level for the first time. We also confirmed that the variation in the relative detection efficiency at the subpixel level reported by Matsumura et al. has improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا