ترغب بنشر مسار تعليمي؟ اضغط هنا

Infall Motions in Massive Star-Forming Regions: Results from Years 1 & 2 of the MALT90 Survey

164   0   0.0 ( 0 )
 نشر من قبل Yuxin He
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive star-forming regions with observed infall motions are good sites for studying the birth of massive stars. In this paper, 405 compact sources have been extracted from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) compact sources that also have been observed in the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey during Years 1 and 2. These observations are complemented with Spitzer GLIMPSE/MIPSGAL mid-IR survey data to help classify the elected star-forming clumps into three evolutionary stages: pre-stellar, proto-stellar and UCHII regions. The results suggest that 0.05 g cm$^{-2}$ is a reliable empirical lower bound for the clump surface densities required for massive-star formation to occur. The optically thick HCO$^{+}$(1-0) and HNC(1-0) lines, as well as the optically thin N$_{2}$H$^{+}$(1-0) line were used to search for infall motions toward these sources. By analyzing the asymmetries of the optically thick HCO$^{+}$(1-0) and HNC(1-0) lines and the mapping observations of HCO$^{+}$(1-0), a total of 131 reliable infall candidates have been identified. The HCO$^{+}$(1-0) line shows the highest occurrence of obvious asymmetric features, suggesting that it may be a better infall motion tracer than other lines such as HNC(1-0). The detection rates of infall candidates toward pre-stellar, proto-stellar and UCHII clumps are 0.3452, 0.3861 and 0.2152, respectively. The relatively high detection rate of infall candidates toward UCHII clumps indicates that many UCHII regions are still accreting matter. The peak column densities and masses of the infall candidates, in general, display a increasing trend with progressing evolutionary stages. However, the rough estimates of the mass infall rate show no obvious variation with evolutionary stage.



قيم البحث

اقرأ أيضاً

The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of d ense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N2H+ and HCO+ abundances increase as a function of evolutionary stage, whereas the N2H+ (1-0) to HCO+ (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.
In this work, we aim to characterise high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz (MALT90) survey, and identified 100 infall candidates. Combined with the results of He et al. (2015), w e obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, HII or photo-dissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, HII and PDR stages are 41.2%, 36.6%, 30.6% and 12.7%, respectively. The infall candidates have a higher H$_{2}$ column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, HII and PDR stages are 2.6$times$10$^{-3}$, 7.0$times$10$^{-3}$, 6.5$times$10$^{-3}$ and 5.5$times$10$^{-3}$ M$_odot$ yr$^{-1}$, respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the HII stages. The power indices of the clump mass function (ClMF) are 2.04$pm$0.16 and 2.17$pm$0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).
The article deals with observations of star-forming regions S231-S235 in quasi-thermal lines of ammonia (NH$_3$), cyanoacetylene (HC$_3$N) and maser lines of methanol (CH$_3$OH) and water vapor (H$_2$O). S231-S235 regions is situated in the giant mol ecular cloud G174+2.5. We selected all massive molecular clumps in G174+2.5 using archive CO data. For the each clump we determined mass, size and CO column density. After that we performed observations of these clumps. We report about first detections of NH$_3$ and HC$_3$N lines toward the molecular clumps WB89 673 and WB89 668. This means that high-density gas is present there. Physical parameters of molecular gas in the clumps were estimated using the data on ammonia emission. We found that the gas temperature and the hydrogen number density are in the ranges 16-30 K and 2.8-7.2$times10^3$ cm$^{-3}$, respectively. The shock-tracing line of CH$_3$OH molecule at 36.2 GHz is newly detected toward WB89 673.
176 - N. Lo , B. Wiles , M. P. Redman 2015
We present molecular line imaging observations of three massive molecular outflow sources, G333.6-0.2, G333.1-0.4, and G332.8-0.5, all of which also show evidence for infall, within the G333 giant molecular cloud (GMC). All three are within a beam si ze (36 arcseconds) of IRAS sources, 1.2-mm dust clumps, various masing species and radio continuum-detected HII regions and hence are associated with high-mass star formation. We present the molecular line data and derive the physical properties of the outflows including the mass, kinematics, and energetics and discuss the inferred characteristics of their driving sources. Outflow masses are of 10 to 40 solar masses in each lobe, with core masses of order 10^3 solar masses. outflow size scales are a few tenth of a parsec, timescales are of several x10^4 years, mass loss rates a few x10^-4 solar masses/year. We also find the cores are turbulent and highly supersonic.
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum mode l to the 3.6 $mu$m through 10 mm spectral energy distributions, we find that ${sim}34$% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ${sim}68$% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates $N_C ge 10^{50}~{rm s}^{-1}$ and dust-processed $L_{rm TIR}ge 10^{6.8}$ L$_{odot}$) have on average higher percentages of absorbed Lyman continuum photons ($sim$51%) and reprocessed starlight ($sim$82%) compared to less luminous regions. Luminous H II regions show lower average PAH fractions than less luminous regions, implying that the strong radiation fields from early-type massive stars are efficient at destroying PAH molecules. On average, the monochromatic luminosities at 8, 24, and 70 $mu$m combined carry 94% of the dust-reprocessed $L_{rm TIR}$. $L_{70}$ captures ${sim}52$% of $L_{rm TIR}$, and is therefore the preferred choice to infer the bolometric luminosity of dusty star-forming regions. We calibrate SFRs based on $L_{24}$ and $L_{70}$ against the Lyman continuum photon rates of the massive stars in each region. Standard extragalactic calibrations of monochromatic SFRs based on population synthesis models are generally consistent with our values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا