ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalues of minimal Cantor systems

132   0   0.0 ( 0 )
 نشر من قبل Alexander Frank
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we give necessary and sufficient conditions that a complex number must satisfy to be a continuous eigenvalue of a minimal Cantor system. Similarly, for minimal Cantor systems of finite rank, we provide necessary and sufficient conditions for having a measure theoretical eigenvalue. These conditions are established from the combinatorial information of the Bratteli-Vershik representations of such systems. As an application, from any minimal Cantor system, we construct a strong orbit equivalent system without irrational eigenvalues which shares all measure theoretical eigenvalues with the original system. In a second application a minimal Cantor system is constructed satisfying the so-called maximal continuous eigenvalue group property.



قيم البحث

اقرأ أيضاً

We show that every (invertible, or noninvertible) minimal Cantor system embeds in $mathbb{R}$ with vanishing derivative everywhere. We also study relations between local shrinking and periodic points.
We develop a technique, pseudo-suspension, that applies to invariant sets of homeomorphisms of a class of annulus homeomorphisms we describe, Handel-Anosov-Katok (HAK) homeomorphisms, that generalize the homeomorphism first described by Handel. Given a HAK homeomorphism and a homeomorphism of the Cantor set, the pseudo-suspension yields a homeomorphism of a new space that admits a homeomorphism that combines features of both of the original homeomorphisms. This allows us to answer a well known open question by providing examples of hereditarily indecomposable continua that admit homeomorphisms of intermediate complexity. Additionally, we show that such examples occur as minimal sets of volume preserving smooth diffeomorphisms of 4-dimensional manifolds. We also use our techniques to exhibit the first examples of minimal, uniformly rigid and weakly mixing homeomorphisms in dimension $1$, and these can also be realized as invariant sets of smooth diffeomorphisms of a 4-manifold. Until now the only known examples of spaces that admit minimal, uniformly rigid and weakly mixing homeomorphisms were modifications of those given by Glasner and Maon in dimension at least $2$.
178 - Fabien Durand 2015
In this article we characterize measure theoretical eigenvalues of Toeplitz Bratteli-Vershik minimal systems of finite topological rank which are not associated to a continuous eigenfunction. Several examples are provided to illustrate the different situations that can occur.
Minimal Cantor systems of finite topological rank (that can be represented by a Bratteli-Vershik diagram with a uniformly bounded number of vertices per level) are known to have dynamical rigidity properties. We establish that such systems, when they are expansive, define the same class of systems, up to topological conjugacy, as primitive and recognizable ${mathcal S}$-adic subshifts. This is done establishing necessary and sufficient conditions for a minimal subshift to be of finite topological rank. As an application, we show that minimal subshifts with non-superlinear complexity (like all classical zero entropy examples) have finite topological rank. Conversely, we analyze the complexity of ${mathcal S}$-adic subshifts and provide sufficient conditions for a finite topological rank subshift to have a non-superlinear complexity. This includes minimal Cantor systems given by Bratteli-Vershik representations whose tower levels have proportional heights and the so called left to right ${mathcal S}$-adic subshifts. We also exhibit that finite topological rank does not imply non-superlinear complexity. In the particular case of topological rank 2 subshifts, we prove their complexity is always subquadratic along a subsequence and their automorphism group is trivial.
154 - Xavier Bressaud 2012
In this article we study conditions to be a continuous or a measurable eigenvalue of finite rank minimal Cantor systems, that is, systems given by an ordered Bratteli diagram with a bounded number of vertices per level. We prove that continuous eigen values always come from the stable subspace associated to the incidence matrices of the Bratteli diagram and we study rationally independent generators of the additive group of continuous eigenvalues. Given an ergodic probability measure, we provide a general necessary condition to be a measurable eigenvalue. Then we consider two families of examples. A first one to illustrate that measurable eigenvalues do not need to come from the stable space. Finally we study Toeplitz type Cantor minimal systems of finite rank. We recover classical results in the continuous case and we prove measurable eigenvalues are always rational but not necessarily continuous.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا