ﻻ يوجد ملخص باللغة العربية
We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Surveys SEGUE project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using BHB stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.
We present an online catalog of distance determinations for $rm 6036$ K giants, most of which are members of the Milky Ways stellar halo. Their medium-resolution spectra from SDSS/SEGUE are used to derive metallicities and rough gravity estimates, al
We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed g
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Ways halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierar
We characterise the radial density, metallicity and flattening profile of the Milky Ways stellar halo, based on the large sample of 1757 spectroscopically confirmed giant stars from SDSS/SEGUE-2 after excising stars that were algorithmically attribut
Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on