ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of running penumbral waves in sunspot photospheres

122   0   0.0 ( 0 )
 نشر من قبل Johannes L\\\"ohner-B\\\"ottcher
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The highly dynamic atmosphere above sunspots exhibits a wealth of magnetohydrodynamic (MHD) waves. Recent studies suggest a coupled nature of the most prominent phenomena: umbral flashes (UFs) and running penumbral waves (RPWs). From an observational point of view, we perform a height-dependent study of RPWs, compare their wave characteristics and aim to track down these so far only chromospherically observed phenomena to photospheric layers to prove the upward propagating field-guided nature of RPWs. We analyze a time series (58,min) of multi-wavelength observations of an isolated circular sunspot (NOAA11823) taken at high spatial and temporal resolution in spectroscopic mode with the Interferometric BIdimensional Spectro-polarimeter (IBIS/DST). By means of a multi-layer intensity sampling, velocity comparisons, wavelet power analysis and sectorial studies of time-slices, we retrieve the power distribution, characteristic periodicities and propagation characteristics of sunspot waves at photospheric and chromospheric levels. Signatures of RPWs are found at photospheric layers. Those continuous oscillations occur preferably at periods between 4-6,min starting at the inner penumbral boundary. The photospheric oscillations all have a slightly delayed, more defined chromospheric counterpart with larger relative velocities (which are linked to preceding UF events). In all layers the power of RPWs follows a filamentary fine-structure and shows a typical ring-shaped power distribution increasing in radius for larger wave periods. The analysis of time-slices reveals apparent horizontal velocities for RPWs at photospheric layers of $approx50,rm{km/s}$ which decrease to $approx30,rm{km/s}$ at chromospheric heights. The observations strongly support the scenario of RPWs being upward propagating slow-mode waves guided by the magnetic field lines.



قيم البحث

اقرأ أيضاً

We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the so lar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behaviour to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localised inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magneto-hydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly-propagating magneto-acoustic waves generated in the photosphere.
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 AA and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1arcsec and are therefo re hard to identify in the Atmospheric Imaging Assembly (AIA) 193 AA images, which have 1.2arcsec spatial resolution, but become readily apparent with Hi-Cs five times better spatial resolution. We supplement Hi-C data with data from AIAs 193 AA passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-Cs 3-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, recently reported by cite{tian14}, and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the lightcurves of the BDs to test whether the Hi-C BDs have transition region (TR) temperature like that of the IRIS BDs. The lightcurves of most Hi-C BDs peak together in different AIA channels indicating that their temperature is likely in the range of the cooler TR ($1-4times 10^5$ K).
The sunspot penumbra comprises numerous thin, radially elongated filaments that are central for heat transport within the penumbra, but whose structure is still not clear. To investigate the fine-scale structure of these filaments, we perform a depth -dependent inversion of spectropolarimetric data of a sunspot very close to solar disk center obtained by Hinode (SOT/SP). We have used a recently developed spatially coupled 2D inversion scheme which allows us to analyze the fine structure of individual penumbral filaments up to the diffraction limit of the telescope. Filaments of different sizes in all parts of penumbra display very similar magnetic field strengths, inclinations and velocity patterns. The similarities allowed us to average all these filaments and to extract the physical properties common to all of them. This average filament shows upflows associated with an upward pointing field at its inner, umbral end and along its axis, downflows along the lateral edge and strong downflows in the outer end associated with a nearly vertical, strong and downward pointing field. The upflowing plasma is significantly hotter than the downflowing plasma. The hot, tear-shaped head of the averaged filament can be associated with a penumbral grain. The central part of the filament shows nearly horizontal fields with strengths of ~1kG. The field above the filament converges, whereas a diverging trend is seen in the deepest layers near the head of the filament. We put forward a unified observational picture of a sunspot penumbral filament. It is consistent with such a filament being a magneto-convective cell, in line with recent MHD simulations. The uniformity of its properties over the penumbra sets constraints on penumbral models and simulations. The complex and inhomogeneous structure of the filament provides a natural explanation for a number of long-running controversies in the literature.
We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appeared in NOAA Active Region 11039. We found an annular zone (width 3-5) surrounding the umbra (pore) in Ca II H images before the penumbra is formed around the umbra. The penumbra was developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were moved to be distributed at the outer edge of the annular zone and did not come into the zone. There is no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, much before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.
We study the velocity structure of penumbral filaments in the deep photosphere to obtain direct evidence for the convective nature of sunspot penumbrae. A sunspot was observed at high spatial resolution with the 1-m Swedish Solar Telescope in the dee p photospheric C I 5380 {AA} absorption line. The Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) method is used for image restoration and straylight is filtered out. We report here the discovery of clear redshifts in the C I 5380 {AA} line at multiple locations in sunspot penumbral filaments. For example, bright head of filaments show larger concentrated blueshift and are surrounded by darker, redshifted regions, suggestive of overturning convection. Elongated downflow lanes are also located beside bright penumbral fibrils. Our results provide the strongest evidence yet for the presence of overturning convection in penumbral filaments and highlight the need to observe the deepest layers of the penumbra in order to uncover the energy transport processes taking place there.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا