ترغب بنشر مسار تعليمي؟ اضغط هنا

First results from the VIRIAL survey: the stellar content of $UVJ$-selected quiescent galaxies at $1.5 < z < 2$ from KMOS

66   0   0.0 ( 0 )
 نشر من قبل Trevor Mendel
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the stellar populations of 25 massive, galaxies ($log[M_ast/M_odot] geq 10.9$) at $1.5 < z < 2$ using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is $bar{z} = 1.75$, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the $G$ band, Fe I, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of $1.03^{+0.13}_{-0.08}$ Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of $1.22^{+0.56}_{-0.19}$ Gyr and $0.85^{+0.08}_{-0.05}$ Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at $0.2 < z < 2$ we find evidence for a $2-3$ Gyr spread in the formation epoch of massive galaxies. At $z < 1$ the measured stellar ages are consistent with passive evolution, while at $1 < z lesssim2$ they appear to saturate at $sim$1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star-formation histories inferred for normal star-forming galaxies, we show that the timescales required to form massive galaxies at $z gtrsim 1.5$ are consistent with the enhanced $alpha$-element abundances found in massive local early-type galaxies.

قيم البحث

اقرأ أيضاً

We present a rest-frame UV-optical stacked spectrum representative of quiescent galaxies at $1.0 < z < 1.3$ with log$(M_*/rm{M_odot}) > 10.8$. The stack is constructed using VANDELS survey data, combined with new KMOS observations. We apply two indep endent full-spectral-fitting approaches, obtaining consistent stellar ages and metallicities. We measure a total metallicity, [Z/H] = $-0.13pm0.08$, and an iron abundance, [Fe/H] = $-0.18pm0.08$, representing falls of $sim0.3$ dex and $sim0.15$ dex respectively compared with the local Universe. We also measure the alpha enhancement via the magnesium abundance, obtaining [Mg/Fe] = 0.23$pm$0.12, consistent with similar-mass galaxies in the local Universe, indicating no evolution in the average alpha enhancement of log$(M_*/rm{M_odot}) sim 11$ quiescent galaxies over the last 8 Gyr. This suggests the very high alpha enhancements recently reported for several very bright $zsim1-2$ quiescent galaxies are due to their extreme masses, in accordance with the well-known downsizing trend, rather than being typical of the $zgtrsim1$ population. The metallicity evolution we observe with redshift (falling [Z/H], [Fe/H], but constant [Mg/Fe]) is consistent with recent studies. We recover a mean stellar age of $2.5^{+0.6}_{-0.4}$ Gyr, corresponding to a formation redshift, $z_rm{form} = 2.4^{+0.6}_{-0.3}$. Recent studies have obtained varying average formation redshifts for $zgtrsim1$ massive quiescent galaxies, and, as these studies report consistent metallicities, we identify different star-formation-history models as the most likely cause. Larger spectroscopic samples from upcoming ground-based instruments will provide precise constraints on ages and metallicities at $zgtrsim1$. Combining these with precise $z>2$ quiescent-galaxy stellar-mass functions from JWST will provide an independent test of formation redshifts from spectral fitting.
We present the first results of the KMOS Lens-Amplified Spectroscopic Survey (KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object integral field spectroscopy of galaxies gravitationally lensed behind seven galaxy clusters s elected from the HST Grism Lens-Amplified Survey from Space (GLASS). Using the power of the cluster magnification we are able to reveal the kinematic structure of 25 galaxies at $0.7 lesssim z lesssim 2.3$, in four cluster fields, with stellar masses $8 lesssim log{(M_star/M_odot)} lesssim 11$. This sample includes 5 sources at $z>1$ with lower stellar masses than in any previous kinematic IFU surveys. Our sample displays a diversity in kinematic structure over this mass and redshift range. The majority of our kinematically resolved sample is rotationally supported, but with a lower ratio of rotational velocity to velocity dispersion than in the local universe, indicating the fraction of dynamically hot disks changes with cosmic time. We find no galaxies with stellar mass $<3 times 10^9 M_odot$ in our sample display regular ordered rotation. Using the enhanced spatial resolution from lensing, we resolve a lower number of dispersion dominated systems compared to field surveys, competitive with findings from surveys using adaptive optics. We find that the KMOS IFUs recover emission line flux from HST grism-selected objects more faithfully than slit spectrographs. With artificial slits we estimate slit spectrographs miss on average 60% of the total flux of emission lines, which decreases rapidly if the emission line is spatially offset from the continuum.
Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rate) of quiescent galaxies within the rest-frame stellar mass$-$colour and $UVJ$ colour$-$colour diagrams corrected for extin ction up to $zsim1$. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our SED-fitting code MUFFIT, making use of composite stellar population models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red $UVJ$ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by the LOESS method to reduce uncertainty effects. Quiescent galaxy samples defined via classical $UVJ$ diagrams are typically contaminated by a $sim20$% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies ($sim30-65$%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass$-$colour and $UVJ$ colour$-$colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.
We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evoluti on of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass ($M_*$) and rest-frame $(U-V)-M_*$ planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 $M_*=3times10^{9}-7times10^{11}$ Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and $v_{rot}/sigma>1$, implying that the star-forming main sequence (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.
The IllustrisTNG project is a new suite of cosmological magneto-hydrodynamical simulations of galaxy formation performed with the Arepo code and updated models for feedback physics. Here we introduce the first two simulations of the series, TNG100 an d TNG300, and quantify the stellar mass content of about 4000 massive galaxy groups and clusters ($10^{13} leq M_{rm 200c}/M_{rm sun} leq 10^{15}$) at recent times ($z leq 1$). The richest clusters have half of their total stellar mass bound to satellite galaxies, with the other half being associated with the central galaxy and the diffuse intra-cluster light. The exact ICL fraction depends sensitively on the definition of a central galaxys mass and varies in our most massive clusters between 20 to 40% of the total stellar mass. Haloes of $5times 10^{14}M_{rm sun}$ and above have more diffuse stellar mass outside 100 kpc than within 100 kpc, with power-law slopes of the radial mass density distribution as shallow as the dark matters ( $-3.5 < alpha_{rm 3D} < -3$). Total halo mass is a very good predictor of stellar mass, and vice versa: at $z=0$, the 3D stellar mass measured within 30 kpc scales as $propto (M_{rm 500c})^{0.49}$ with a $sim 0.12$ dex scatter. This is possibly too steep in comparison to the available observational constraints, even though the abundance of TNG less massive galaxies ($< 10^{11}M_{rm sun}$ in stars) is in good agreement with the measured galaxy stellar mass functions at recent epochs. The 3D sizes of massive galaxies fall too on a tight ($sim$0.16 dex scatter) power-law relation with halo mass, with $r^{rm stars}_{rm 0.5} propto (M_{rm 500c})^{0.53}$. Even more fundamentally, halo mass alone is a good predictor for the whole stellar mass profiles beyond the inner few kpc, and we show how on average these can be precisely recovered given a single mass measurement of the galaxy or its halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا