ﻻ يوجد ملخص باللغة العربية
A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagins equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagins algorithm in hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.
Within the geometrical framework developed in arXiv:0705.2362, the problem of minimality for constrained calculus of variations is analysed among the class of differentiable curves. A fully covariant representation of the second variation of the acti
This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation
The Chevalley-Eilenberg differential calculus and differential operators over N-graded commutative rings are constructed. This is a straightforward generalization of the differential calculus over commutative rings, and it is the most general case of
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are g
An extension of the Legendre transform to non-convex functions with vanishing Hessian as a mix of envelope and general solutions of the Clairaut equation is proposed. Applying this to systems with constraints, the procedure of finding a Hamiltonian f