ﻻ يوجد ملخص باللغة العربية
Excited states in $^{28}$Na have been studied using the $beta$-decay of implanted $^{28}$Ne ions at GANIL/LISE as well as the in-beam $gamma$-ray spectroscopy at the NSCL/S800 facility. New states of positive (J$^{pi}$=3,4$^+$) and negative (J$^{pi}$=1-5$^-$) parity are proposed. The former arise from the coupling between 0d$_{5/2}$ protons and a 0d$_{3/2}$ neutron, while the latter are due to couplings with 1p$_{3/2}$ or 0f$_{7/2}$ neutrons. While the relative energies between the J$^{pi}$=1-4$^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between $^{26}$F and $^{30}$Al. This points to a possible change in the proton-neutron 0d$_{5/2}$-0d$_{3/2}$ effective interaction when moving from stability to the drip line. The presence of J$^{pi}$=1-4$^-$ negative parity states around 1.5 MeV as well as of a candidate for a J$^{pi}$=5$^-$ state around 2.5 MeV give further support to the collapse of the N=20 gap and to the inversion between the 0f$_{7/2}$ and 1p$_{3/2}$ levels below Z=12. These features are discussed in the framework of Shell Model and EDF calculations, leading to predicted negative parity states in the low energy spectra of the $^{26}$F and $^{25}$O nuclei.
We describe the islands of inversion that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the Interacting Shell Model in very large valence spaces. We explain these configuration
We report on the observation of excited states in the neutron-deficient phosphorus isotopes $^{26,27,28}$P via in-beam gamma-ray spectroscopy with both high-efficiency and high-resolution detector arrays. In $^{26}$P, a previously-unobserved level ha
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. E
A long-lived $J^{pi}=4_1^+$ isomer, $T_{1/2}=2.2(1)$ms, has been discovered at 643.4(1) keV in the weakly-bound $^{26}_{9}$F nucleus. It was populated at GANIL in the fragmentation of a $^{36}$S beam. It decays by an internal transition to the $J^{pi
We report in this paper a study in terms of the nuclear shell model about the location of the calcium isotopes drip line. The starting point is considering the realistic two-body potential derived by Entem and Machleidt within chiral perturbation the